| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oviec | Unicode version | ||
| Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.) |
| Ref | Expression |
|---|---|
| oviec.1 |
|
| oviec.2 |
|
| oviec.3 |
|
| oviec.4 |
|
| oviec.5 |
|
| oviec.7 |
|
| oviec.8 |
|
| oviec.9 |
|
| oviec.10 |
|
| oviec.11 |
|
| oviec.12 |
|
| oviec.13 |
|
| oviec.14 |
|
| oviec.15 |
|
| oviec.16 |
|
| Ref | Expression |
|---|---|
| oviec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oviec.4 |
. . 3
| |
| 2 | oviec.5 |
. . 3
| |
| 3 | oviec.16 |
. . . 4
| |
| 4 | oviec.8 |
. . . . . 6
| |
| 5 | oviec.7 |
. . . . . 6
| |
| 6 | 4, 5 | opbrop 4754 |
. . . . 5
|
| 7 | oviec.9 |
. . . . . 6
| |
| 8 | 7, 5 | opbrop 4754 |
. . . . 5
|
| 9 | 6, 8 | bi2anan9 606 |
. . . 4
|
| 10 | oviec.2 |
. . . . . . 7
| |
| 11 | oviec.11 |
. . . . . . 7
| |
| 12 | oviec.10 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | ovi3 6083 |
. . . . . 6
|
| 14 | oviec.3 |
. . . . . . 7
| |
| 15 | oviec.12 |
. . . . . . 7
| |
| 16 | 14, 15, 12 | ovi3 6083 |
. . . . . 6
|
| 17 | 13, 16 | breqan12d 4060 |
. . . . 5
|
| 18 | 17 | an4s 588 |
. . . 4
|
| 19 | 3, 9, 18 | 3imtr4d 203 |
. . 3
|
| 20 | oviec.14 |
. . . 4
| |
| 21 | oviec.15 |
. . . . . . . 8
| |
| 22 | 21 | eleq2i 2272 |
. . . . . . 7
|
| 23 | 21 | eleq2i 2272 |
. . . . . . 7
|
| 24 | 22, 23 | anbi12i 460 |
. . . . . 6
|
| 25 | 24 | anbi1i 458 |
. . . . 5
|
| 26 | 25 | oprabbii 6000 |
. . . 4
|
| 27 | 20, 26 | eqtri 2226 |
. . 3
|
| 28 | 1, 2, 19, 27 | th3q 6727 |
. 2
|
| 29 | oviec.1 |
. . . 4
| |
| 30 | oviec.13 |
. . . 4
| |
| 31 | 29, 30, 12 | ovi3 6083 |
. . 3
|
| 32 | 31 | eceq1d 6656 |
. 2
|
| 33 | 28, 32 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-er 6620 df-ec 6622 df-qs 6626 |
| This theorem is referenced by: addpipqqs 7483 mulpipqqs 7486 |
| Copyright terms: Public domain | W3C validator |