ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oviec Unicode version

Theorem oviec 6730
Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
Hypotheses
Ref Expression
oviec.1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  ->  H  e.  ( S  X.  S ) )
oviec.2  |-  ( ( ( a  e.  S  /\  b  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  ->  K  e.  ( S  X.  S ) )
oviec.3  |-  ( ( ( c  e.  S  /\  d  e.  S
)  /\  ( t  e.  S  /\  s  e.  S ) )  ->  L  e.  ( S  X.  S ) )
oviec.4  |-  .~  e.  _V
oviec.5  |-  .~  Er  ( S  X.  S
)
oviec.7  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
oviec.8  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( ph  <->  ps )
)
oviec.9  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( ph  <->  ch )
)
oviec.10  |-  .+  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  J
) ) }
oviec.11  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  J  =  K )
oviec.12  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  J  =  L )
oviec.13  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  J  =  H )
oviec.14  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  Q  /\  y  e.  Q )  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }
oviec.15  |-  Q  =  ( ( S  X.  S ) /.  .~  )
oviec.16  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( ps  /\  ch )  ->  K  .~  L ) )
Assertion
Ref Expression
oviec  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  .+^  [ <. C ,  D >. ]  .~  )  =  [ H ]  .~  )
Distinct variable groups:    a, b, c, d, f, u, v, w, x, y, z, C    D, a, b, c, d, f, u, v, w, x, y, z   
x, J, y, z   
g, a, h, A, b, c, d, f, u, v, w, x, y, z    ch, u, v, w, z    f, H, u, v, w, x, y, z    B, a, b, c, d, f, g, h, u, v, w, x, y, z   
f, K, u, v, w, x, y, z    ps, u, v, w, z   
f, L, u, v, w, x, y, z    ph, x, y    s, a, t, S, b, c, d, f, g, h, u, v, w, x, y, z    .+ , a,
b, c, d, g, h, s, t, x, y, z    .~ , a,
b, c, d, g, h, s, t, x, y, z
Allowed substitution hints:    ph( z, w, v, u, t, f, g, h, s, a, b, c, d)    ps( x, y, t, f, g, h, s, a, b, c, d)    ch( x, y, t, f, g, h, s, a, b, c, d)    A( t, s)    B( t, s)    C( t, g, h, s)    D( t, g, h, s)    .+ ( w, v, u, f)    .+^ ( x, y, z, w, v, u, t, f, g, h, s, a, b, c, d)    Q( x, y, z, w, v, u, t, f, g, h, s, a, b, c, d)    .~ ( w, v, u, f)    H( t, g, h, s, a, b, c, d)    J( w, v, u, t, f, g, h, s, a, b, c, d)    K( t, g, h, s, a, b, c, d)    L( t, g, h, s, a, b, c, d)

Proof of Theorem oviec
StepHypRef Expression
1 oviec.4 . . 3  |-  .~  e.  _V
2 oviec.5 . . 3  |-  .~  Er  ( S  X.  S
)
3 oviec.16 . . . 4  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( ps  /\  ch )  ->  K  .~  L ) )
4 oviec.8 . . . . . 6  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( ph  <->  ps )
)
5 oviec.7 . . . . . 6  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
64, 5opbrop 4755 . . . . 5  |-  ( ( ( a  e.  S  /\  b  e.  S
)  /\  ( c  e.  S  /\  d  e.  S ) )  -> 
( <. a ,  b
>.  .~  <. c ,  d
>. 
<->  ps ) )
7 oviec.9 . . . . . 6  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( ph  <->  ch )
)
87, 5opbrop 4755 . . . . 5  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( t  e.  S  /\  s  e.  S ) )  -> 
( <. g ,  h >.  .~  <. t ,  s
>. 
<->  ch ) )
96, 8bi2anan9 606 . . . 4  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( <. a ,  b >.  .~  <. c ,  d >.  /\  <. g ,  h >.  .~  <. t ,  s >. )  <->  ( ps  /\  ch )
) )
10 oviec.2 . . . . . . 7  |-  ( ( ( a  e.  S  /\  b  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  ->  K  e.  ( S  X.  S ) )
11 oviec.11 . . . . . . 7  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  J  =  K )
12 oviec.10 . . . . . . 7  |-  .+  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  J
) ) }
1310, 11, 12ovi3 6085 . . . . . 6  |-  ( ( ( a  e.  S  /\  b  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  -> 
( <. a ,  b
>.  .+  <. g ,  h >. )  =  K )
14 oviec.3 . . . . . . 7  |-  ( ( ( c  e.  S  /\  d  e.  S
)  /\  ( t  e.  S  /\  s  e.  S ) )  ->  L  e.  ( S  X.  S ) )
15 oviec.12 . . . . . . 7  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  J  =  L )
1614, 15, 12ovi3 6085 . . . . . 6  |-  ( ( ( c  e.  S  /\  d  e.  S
)  /\  ( t  e.  S  /\  s  e.  S ) )  -> 
( <. c ,  d
>.  .+  <. t ,  s
>. )  =  L
)
1713, 16breqan12d 4061 . . . . 5  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
g  e.  S  /\  h  e.  S )
)  /\  ( (
c  e.  S  /\  d  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( <. a ,  b >.  .+  <. g ,  h >. )  .~  ( <. c ,  d
>.  .+  <. t ,  s
>. )  <->  K  .~  L ) )
1817an4s 588 . . . 4  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( <. a ,  b >.  .+  <. g ,  h >. )  .~  ( <. c ,  d
>.  .+  <. t ,  s
>. )  <->  K  .~  L ) )
193, 9, 183imtr4d 203 . . 3  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( <. a ,  b >.  .~  <. c ,  d >.  /\  <. g ,  h >.  .~  <. t ,  s >. )  ->  ( <. a ,  b
>.  .+  <. g ,  h >. )  .~  ( <.
c ,  d >.  .+  <. t ,  s
>. ) ) )
20 oviec.14 . . . 4  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  Q  /\  y  e.  Q )  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }
21 oviec.15 . . . . . . . 8  |-  Q  =  ( ( S  X.  S ) /.  .~  )
2221eleq2i 2272 . . . . . . 7  |-  ( x  e.  Q  <->  x  e.  ( ( S  X.  S ) /.  .~  ) )
2321eleq2i 2272 . . . . . . 7  |-  ( y  e.  Q  <->  y  e.  ( ( S  X.  S ) /.  .~  ) )
2422, 23anbi12i 460 . . . . . 6  |-  ( ( x  e.  Q  /\  y  e.  Q )  <->  ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) ) )
2524anbi1i 458 . . . . 5  |-  ( ( ( x  e.  Q  /\  y  e.  Q
)  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
)  <->  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) )
2625oprabbii 6002 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q  /\  y  e.  Q
)  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }
2720, 26eqtri 2226 . . 3  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }
281, 2, 19, 27th3q 6729 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  .+^  [ <. C ,  D >. ]  .~  )  =  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  )
29 oviec.1 . . . 4  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  ->  H  e.  ( S  X.  S ) )
30 oviec.13 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  J  =  H )
3129, 30, 12ovi3 6085 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .+  <. C ,  D >. )  =  H )
3231eceq1d 6658 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  ->  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ H ]  .~  )
3328, 32eqtrd 2238 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  .+^  [ <. C ,  D >. ]  .~  )  =  [ H ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   <.cop 3636   class class class wbr 4045   {copab 4105    X. cxp 4674  (class class class)co 5946   {coprab 5947    Er wer 6619   [cec 6620   /.cqs 6621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950  df-er 6622  df-ec 6624  df-qs 6628
This theorem is referenced by:  addpipqqs  7485  mulpipqqs  7488
  Copyright terms: Public domain W3C validator