| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oviec | Unicode version | ||
| Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.) |
| Ref | Expression |
|---|---|
| oviec.1 |
|
| oviec.2 |
|
| oviec.3 |
|
| oviec.4 |
|
| oviec.5 |
|
| oviec.7 |
|
| oviec.8 |
|
| oviec.9 |
|
| oviec.10 |
|
| oviec.11 |
|
| oviec.12 |
|
| oviec.13 |
|
| oviec.14 |
|
| oviec.15 |
|
| oviec.16 |
|
| Ref | Expression |
|---|---|
| oviec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oviec.4 |
. . 3
| |
| 2 | oviec.5 |
. . 3
| |
| 3 | oviec.16 |
. . . 4
| |
| 4 | oviec.8 |
. . . . . 6
| |
| 5 | oviec.7 |
. . . . . 6
| |
| 6 | 4, 5 | opbrop 4798 |
. . . . 5
|
| 7 | oviec.9 |
. . . . . 6
| |
| 8 | 7, 5 | opbrop 4798 |
. . . . 5
|
| 9 | 6, 8 | bi2anan9 608 |
. . . 4
|
| 10 | oviec.2 |
. . . . . . 7
| |
| 11 | oviec.11 |
. . . . . . 7
| |
| 12 | oviec.10 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | ovi3 6142 |
. . . . . 6
|
| 14 | oviec.3 |
. . . . . . 7
| |
| 15 | oviec.12 |
. . . . . . 7
| |
| 16 | 14, 15, 12 | ovi3 6142 |
. . . . . 6
|
| 17 | 13, 16 | breqan12d 4099 |
. . . . 5
|
| 18 | 17 | an4s 590 |
. . . 4
|
| 19 | 3, 9, 18 | 3imtr4d 203 |
. . 3
|
| 20 | oviec.14 |
. . . 4
| |
| 21 | oviec.15 |
. . . . . . . 8
| |
| 22 | 21 | eleq2i 2296 |
. . . . . . 7
|
| 23 | 21 | eleq2i 2296 |
. . . . . . 7
|
| 24 | 22, 23 | anbi12i 460 |
. . . . . 6
|
| 25 | 24 | anbi1i 458 |
. . . . 5
|
| 26 | 25 | oprabbii 6059 |
. . . 4
|
| 27 | 20, 26 | eqtri 2250 |
. . 3
|
| 28 | 1, 2, 19, 27 | th3q 6787 |
. 2
|
| 29 | oviec.1 |
. . . 4
| |
| 30 | oviec.13 |
. . . 4
| |
| 31 | 29, 30, 12 | ovi3 6142 |
. . 3
|
| 32 | 31 | eceq1d 6716 |
. 2
|
| 33 | 28, 32 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-er 6680 df-ec 6682 df-qs 6686 |
| This theorem is referenced by: addpipqqs 7557 mulpipqqs 7560 |
| Copyright terms: Public domain | W3C validator |