| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oviec | Unicode version | ||
| Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.) |
| Ref | Expression |
|---|---|
| oviec.1 |
|
| oviec.2 |
|
| oviec.3 |
|
| oviec.4 |
|
| oviec.5 |
|
| oviec.7 |
|
| oviec.8 |
|
| oviec.9 |
|
| oviec.10 |
|
| oviec.11 |
|
| oviec.12 |
|
| oviec.13 |
|
| oviec.14 |
|
| oviec.15 |
|
| oviec.16 |
|
| Ref | Expression |
|---|---|
| oviec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oviec.4 |
. . 3
| |
| 2 | oviec.5 |
. . 3
| |
| 3 | oviec.16 |
. . . 4
| |
| 4 | oviec.8 |
. . . . . 6
| |
| 5 | oviec.7 |
. . . . . 6
| |
| 6 | 4, 5 | opbrop 4743 |
. . . . 5
|
| 7 | oviec.9 |
. . . . . 6
| |
| 8 | 7, 5 | opbrop 4743 |
. . . . 5
|
| 9 | 6, 8 | bi2anan9 606 |
. . . 4
|
| 10 | oviec.2 |
. . . . . . 7
| |
| 11 | oviec.11 |
. . . . . . 7
| |
| 12 | oviec.10 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | ovi3 6064 |
. . . . . 6
|
| 14 | oviec.3 |
. . . . . . 7
| |
| 15 | oviec.12 |
. . . . . . 7
| |
| 16 | 14, 15, 12 | ovi3 6064 |
. . . . . 6
|
| 17 | 13, 16 | breqan12d 4050 |
. . . . 5
|
| 18 | 17 | an4s 588 |
. . . 4
|
| 19 | 3, 9, 18 | 3imtr4d 203 |
. . 3
|
| 20 | oviec.14 |
. . . 4
| |
| 21 | oviec.15 |
. . . . . . . 8
| |
| 22 | 21 | eleq2i 2263 |
. . . . . . 7
|
| 23 | 21 | eleq2i 2263 |
. . . . . . 7
|
| 24 | 22, 23 | anbi12i 460 |
. . . . . 6
|
| 25 | 24 | anbi1i 458 |
. . . . 5
|
| 26 | 25 | oprabbii 5981 |
. . . 4
|
| 27 | 20, 26 | eqtri 2217 |
. . 3
|
| 28 | 1, 2, 19, 27 | th3q 6708 |
. 2
|
| 29 | oviec.1 |
. . . 4
| |
| 30 | oviec.13 |
. . . 4
| |
| 31 | 29, 30, 12 | ovi3 6064 |
. . 3
|
| 32 | 31 | eceq1d 6637 |
. 2
|
| 33 | 28, 32 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-er 6601 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: addpipqqs 7454 mulpipqqs 7457 |
| Copyright terms: Public domain | W3C validator |