Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oviec | Unicode version |
Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.) |
Ref | Expression |
---|---|
oviec.1 | |
oviec.2 | |
oviec.3 | |
oviec.4 | |
oviec.5 | |
oviec.7 | |
oviec.8 | |
oviec.9 | |
oviec.10 | |
oviec.11 | |
oviec.12 | |
oviec.13 | |
oviec.14 | |
oviec.15 | |
oviec.16 |
Ref | Expression |
---|---|
oviec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oviec.4 | . . 3 | |
2 | oviec.5 | . . 3 | |
3 | oviec.16 | . . . 4 | |
4 | oviec.8 | . . . . . 6 | |
5 | oviec.7 | . . . . . 6 | |
6 | 4, 5 | opbrop 4683 | . . . . 5 |
7 | oviec.9 | . . . . . 6 | |
8 | 7, 5 | opbrop 4683 | . . . . 5 |
9 | 6, 8 | bi2anan9 596 | . . . 4 |
10 | oviec.2 | . . . . . . 7 | |
11 | oviec.11 | . . . . . . 7 | |
12 | oviec.10 | . . . . . . 7 | |
13 | 10, 11, 12 | ovi3 5978 | . . . . . 6 |
14 | oviec.3 | . . . . . . 7 | |
15 | oviec.12 | . . . . . . 7 | |
16 | 14, 15, 12 | ovi3 5978 | . . . . . 6 |
17 | 13, 16 | breqan12d 3998 | . . . . 5 |
18 | 17 | an4s 578 | . . . 4 |
19 | 3, 9, 18 | 3imtr4d 202 | . . 3 |
20 | oviec.14 | . . . 4 | |
21 | oviec.15 | . . . . . . . 8 | |
22 | 21 | eleq2i 2233 | . . . . . . 7 |
23 | 21 | eleq2i 2233 | . . . . . . 7 |
24 | 22, 23 | anbi12i 456 | . . . . . 6 |
25 | 24 | anbi1i 454 | . . . . 5 |
26 | 25 | oprabbii 5897 | . . . 4 |
27 | 20, 26 | eqtri 2186 | . . 3 |
28 | 1, 2, 19, 27 | th3q 6606 | . 2 |
29 | oviec.1 | . . . 4 | |
30 | oviec.13 | . . . 4 | |
31 | 29, 30, 12 | ovi3 5978 | . . 3 |
32 | 31 | eceq1d 6537 | . 2 |
33 | 28, 32 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 cop 3579 class class class wbr 3982 copab 4042 cxp 4602 (class class class)co 5842 coprab 5843 wer 6498 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-er 6501 df-ec 6503 df-qs 6507 |
This theorem is referenced by: addpipqqs 7311 mulpipqqs 7314 |
Copyright terms: Public domain | W3C validator |