| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > oviec | Unicode version | ||
| Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| oviec.1 | 
 | 
| oviec.2 | 
 | 
| oviec.3 | 
 | 
| oviec.4 | 
 | 
| oviec.5 | 
 | 
| oviec.7 | 
 | 
| oviec.8 | 
 | 
| oviec.9 | 
 | 
| oviec.10 | 
 | 
| oviec.11 | 
 | 
| oviec.12 | 
 | 
| oviec.13 | 
 | 
| oviec.14 | 
 | 
| oviec.15 | 
 | 
| oviec.16 | 
 | 
| Ref | Expression | 
|---|---|
| oviec | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oviec.4 | 
. . 3
 | |
| 2 | oviec.5 | 
. . 3
 | |
| 3 | oviec.16 | 
. . . 4
 | |
| 4 | oviec.8 | 
. . . . . 6
 | |
| 5 | oviec.7 | 
. . . . . 6
 | |
| 6 | 4, 5 | opbrop 4742 | 
. . . . 5
 | 
| 7 | oviec.9 | 
. . . . . 6
 | |
| 8 | 7, 5 | opbrop 4742 | 
. . . . 5
 | 
| 9 | 6, 8 | bi2anan9 606 | 
. . . 4
 | 
| 10 | oviec.2 | 
. . . . . . 7
 | |
| 11 | oviec.11 | 
. . . . . . 7
 | |
| 12 | oviec.10 | 
. . . . . . 7
 | |
| 13 | 10, 11, 12 | ovi3 6060 | 
. . . . . 6
 | 
| 14 | oviec.3 | 
. . . . . . 7
 | |
| 15 | oviec.12 | 
. . . . . . 7
 | |
| 16 | 14, 15, 12 | ovi3 6060 | 
. . . . . 6
 | 
| 17 | 13, 16 | breqan12d 4049 | 
. . . . 5
 | 
| 18 | 17 | an4s 588 | 
. . . 4
 | 
| 19 | 3, 9, 18 | 3imtr4d 203 | 
. . 3
 | 
| 20 | oviec.14 | 
. . . 4
 | |
| 21 | oviec.15 | 
. . . . . . . 8
 | |
| 22 | 21 | eleq2i 2263 | 
. . . . . . 7
 | 
| 23 | 21 | eleq2i 2263 | 
. . . . . . 7
 | 
| 24 | 22, 23 | anbi12i 460 | 
. . . . . 6
 | 
| 25 | 24 | anbi1i 458 | 
. . . . 5
 | 
| 26 | 25 | oprabbii 5977 | 
. . . 4
 | 
| 27 | 20, 26 | eqtri 2217 | 
. . 3
 | 
| 28 | 1, 2, 19, 27 | th3q 6699 | 
. 2
 | 
| 29 | oviec.1 | 
. . . 4
 | |
| 30 | oviec.13 | 
. . . 4
 | |
| 31 | 29, 30, 12 | ovi3 6060 | 
. . 3
 | 
| 32 | 31 | eceq1d 6628 | 
. 2
 | 
| 33 | 28, 32 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-er 6592 df-ec 6594 df-qs 6598 | 
| This theorem is referenced by: addpipqqs 7437 mulpipqqs 7440 | 
| Copyright terms: Public domain | W3C validator |