ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcnsr Unicode version

Theorem mulcnsr 7797
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
Assertion
Ref Expression
mulcnsr  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)

Proof of Theorem mulcnsr
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclsr 7716 . . . . 5  |-  ( ( A  e.  R.  /\  C  e.  R. )  ->  ( A  .R  C
)  e.  R. )
21ad2ant2r 506 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  .R  C )  e.  R. )
3 m1r 7714 . . . . 5  |-  -1R  e.  R.
4 mulclsr 7716 . . . . . 6  |-  ( ( B  e.  R.  /\  D  e.  R. )  ->  ( B  .R  D
)  e.  R. )
54ad2ant2l 505 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  .R  D )  e.  R. )
6 mulclsr 7716 . . . . 5  |-  ( ( -1R  e.  R.  /\  ( B  .R  D )  e.  R. )  -> 
( -1R  .R  ( B  .R  D ) )  e.  R. )
73, 5, 6sylancr 412 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( -1R  .R  ( B  .R  D
) )  e.  R. )
8 addclsr 7715 . . . 4  |-  ( ( ( A  .R  C
)  e.  R.  /\  ( -1R  .R  ( B  .R  D ) )  e.  R. )  -> 
( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R. )
92, 7, 8syl2anc 409 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R. )
10 mulclsr 7716 . . . . 5  |-  ( ( B  e.  R.  /\  C  e.  R. )  ->  ( B  .R  C
)  e.  R. )
1110ad2ant2lr 507 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  .R  C )  e.  R. )
12 mulclsr 7716 . . . . 5  |-  ( ( A  e.  R.  /\  D  e.  R. )  ->  ( A  .R  D
)  e.  R. )
1312ad2ant2rl 508 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  .R  D )  e.  R. )
14 addclsr 7715 . . . 4  |-  ( ( ( B  .R  C
)  e.  R.  /\  ( A  .R  D )  e.  R. )  -> 
( ( B  .R  C )  +R  ( A  .R  D ) )  e.  R. )
1511, 13, 14syl2anc 409 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( ( B  .R  C )  +R  ( A  .R  D
) )  e.  R. )
16 opelxpi 4643 . . 3  |-  ( ( ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R.  /\  (
( B  .R  C
)  +R  ( A  .R  D ) )  e.  R. )  ->  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >.  e.  ( R.  X.  R. )
)
179, 15, 16syl2anc 409 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C
)  +R  ( A  .R  D ) )
>.  e.  ( R.  X.  R. ) )
18 simpll 524 . . . . 5  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  w  =  A )
19 simprl 526 . . . . 5  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  u  =  C )
2018, 19oveq12d 5871 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( w  .R  u
)  =  ( A  .R  C ) )
21 simplr 525 . . . . . 6  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
v  =  B )
22 simprr 527 . . . . . 6  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
f  =  D )
2321, 22oveq12d 5871 . . . . 5  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( v  .R  f
)  =  ( B  .R  D ) )
2423oveq2d 5869 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( -1R  .R  (
v  .R  f )
)  =  ( -1R 
.R  ( B  .R  D ) ) )
2520, 24oveq12d 5871 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) )  =  ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) )
2621, 19oveq12d 5871 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( v  .R  u
)  =  ( B  .R  C ) )
2718, 22oveq12d 5871 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( w  .R  f
)  =  ( A  .R  D ) )
2826, 27oveq12d 5871 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( ( v  .R  u )  +R  (
w  .R  f )
)  =  ( ( B  .R  C )  +R  ( A  .R  D ) ) )
2925, 28opeq12d 3773 . 2  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  <. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >.  =  <. ( ( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. )
30 df-mul 7786 . . 3  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
31 df-c 7780 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
3231eleq2i 2237 . . . . . 6  |-  ( x  e.  CC  <->  x  e.  ( R.  X.  R. )
)
3331eleq2i 2237 . . . . . 6  |-  ( y  e.  CC  <->  y  e.  ( R.  X.  R. )
)
3432, 33anbi12i 457 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  <->  ( x  e.  ( R. 
X.  R. )  /\  y  e.  ( R.  X.  R. ) ) )
3534anbi1i 455 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)  <->  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
3635oprabbii 5908 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
3730, 36eqtri 2191 . 2  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
3817, 29, 37ovi3 5989 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   <.cop 3586    X. cxp 4609  (class class class)co 5853   {coprab 5854   R.cnr 7259   -1Rcm1r 7262    +R cplr 7263    .R cmr 7264   CCcc 7772    x. cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-m1r 7695  df-c 7780  df-mul 7786
This theorem is referenced by:  mulresr  7800  mulcnsrec  7805  axmulcl  7828  axi2m1  7837  axcnre  7843
  Copyright terms: Public domain W3C validator