| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcnsr | Unicode version | ||
| Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulcnsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulclsr 7869 |
. . . . 5
| |
| 2 | 1 | ad2ant2r 509 |
. . . 4
|
| 3 | m1r 7867 |
. . . . 5
| |
| 4 | mulclsr 7869 |
. . . . . 6
| |
| 5 | 4 | ad2ant2l 508 |
. . . . 5
|
| 6 | mulclsr 7869 |
. . . . 5
| |
| 7 | 3, 5, 6 | sylancr 414 |
. . . 4
|
| 8 | addclsr 7868 |
. . . 4
| |
| 9 | 2, 7, 8 | syl2anc 411 |
. . 3
|
| 10 | mulclsr 7869 |
. . . . 5
| |
| 11 | 10 | ad2ant2lr 510 |
. . . 4
|
| 12 | mulclsr 7869 |
. . . . 5
| |
| 13 | 12 | ad2ant2rl 511 |
. . . 4
|
| 14 | addclsr 7868 |
. . . 4
| |
| 15 | 11, 13, 14 | syl2anc 411 |
. . 3
|
| 16 | opelxpi 4708 |
. . 3
| |
| 17 | 9, 15, 16 | syl2anc 411 |
. 2
|
| 18 | simpll 527 |
. . . . 5
| |
| 19 | simprl 529 |
. . . . 5
| |
| 20 | 18, 19 | oveq12d 5964 |
. . . 4
|
| 21 | simplr 528 |
. . . . . 6
| |
| 22 | simprr 531 |
. . . . . 6
| |
| 23 | 21, 22 | oveq12d 5964 |
. . . . 5
|
| 24 | 23 | oveq2d 5962 |
. . . 4
|
| 25 | 20, 24 | oveq12d 5964 |
. . 3
|
| 26 | 21, 19 | oveq12d 5964 |
. . . 4
|
| 27 | 18, 22 | oveq12d 5964 |
. . . 4
|
| 28 | 26, 27 | oveq12d 5964 |
. . 3
|
| 29 | 25, 28 | opeq12d 3827 |
. 2
|
| 30 | df-mul 7939 |
. . 3
| |
| 31 | df-c 7933 |
. . . . . . 7
| |
| 32 | 31 | eleq2i 2272 |
. . . . . 6
|
| 33 | 31 | eleq2i 2272 |
. . . . . 6
|
| 34 | 32, 33 | anbi12i 460 |
. . . . 5
|
| 35 | 34 | anbi1i 458 |
. . . 4
|
| 36 | 35 | oprabbii 6002 |
. . 3
|
| 37 | 30, 36 | eqtri 2226 |
. 2
|
| 38 | 17, 29, 37 | ovi3 6085 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-eprel 4337 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-1o 6504 df-2o 6505 df-oadd 6508 df-omul 6509 df-er 6622 df-ec 6624 df-qs 6628 df-ni 7419 df-pli 7420 df-mi 7421 df-lti 7422 df-plpq 7459 df-mpq 7460 df-enq 7462 df-nqqs 7463 df-plqqs 7464 df-mqqs 7465 df-1nqqs 7466 df-rq 7467 df-ltnqqs 7468 df-enq0 7539 df-nq0 7540 df-0nq0 7541 df-plq0 7542 df-mq0 7543 df-inp 7581 df-i1p 7582 df-iplp 7583 df-imp 7584 df-enr 7841 df-nr 7842 df-plr 7843 df-mr 7844 df-m1r 7848 df-c 7933 df-mul 7939 |
| This theorem is referenced by: mulresr 7953 mulcnsrec 7958 axmulcl 7981 axi2m1 7990 axcnre 7996 |
| Copyright terms: Public domain | W3C validator |