ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addvalex Unicode version

Theorem addvalex 7911
Description: Existence of a sum. This is dependent on how we define  + so once we proceed to real number axioms we will replace it with theorems such as addcl 8004. (Contributed by Jim Kingdon, 14-Jul-2021.)
Assertion
Ref Expression
addvalex  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B
)  e.  _V )

Proof of Theorem addvalex
Dummy variables  u  f  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5925 . 2  |-  ( A  +  B )  =  (  +  `  <. A ,  B >. )
2 df-nr 7794 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
3 npex 7540 . . . . . . 7  |-  P.  e.  _V
43, 3xpex 4778 . . . . . 6  |-  ( P. 
X.  P. )  e.  _V
54qsex 6651 . . . . 5  |-  ( ( P.  X.  P. ) /.  ~R  )  e.  _V
62, 5eqeltri 2269 . . . 4  |-  R.  e.  _V
7 df-add 7890 . . . . 5  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
8 df-c 7885 . . . . . . . . 9  |-  CC  =  ( R.  X.  R. )
98eleq2i 2263 . . . . . . . 8  |-  ( x  e.  CC  <->  x  e.  ( R.  X.  R. )
)
108eleq2i 2263 . . . . . . . 8  |-  ( y  e.  CC  <->  y  e.  ( R.  X.  R. )
)
119, 10anbi12i 460 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  <->  ( x  e.  ( R. 
X.  R. )  /\  y  e.  ( R.  X.  R. ) ) )
1211anbi1i 458 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)  <->  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
1312oprabbii 5977 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
147, 13eqtri 2217 . . . 4  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
156, 14oprabex3 6186 . . 3  |-  +  e.  _V
16 opexg 4261 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
17 fvexg 5577 . . 3  |-  ( (  +  e.  _V  /\  <. A ,  B >.  e. 
_V )  ->  (  +  `  <. A ,  B >. )  e.  _V )
1815, 16, 17sylancr 414 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (  +  `  <. A ,  B >. )  e.  _V )
191, 18eqeltrid 2283 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763   <.cop 3625    X. cxp 4661   ` cfv 5258  (class class class)co 5922   {coprab 5923   /.cqs 6591   P.cnp 7358    ~R cer 7363   R.cnr 7364    +R cplr 7368   CCcc 7877    + caddc 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-qs 6598  df-ni 7371  df-nqqs 7415  df-inp 7533  df-nr 7794  df-c 7885  df-add 7890
This theorem is referenced by:  peano2nnnn  7920
  Copyright terms: Public domain W3C validator