ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addvalex Unicode version

Theorem addvalex 7846
Description: Existence of a sum. This is dependent on how we define  + so once we proceed to real number axioms we will replace it with theorems such as addcl 7939. (Contributed by Jim Kingdon, 14-Jul-2021.)
Assertion
Ref Expression
addvalex  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B
)  e.  _V )

Proof of Theorem addvalex
Dummy variables  u  f  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5881 . 2  |-  ( A  +  B )  =  (  +  `  <. A ,  B >. )
2 df-nr 7729 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
3 npex 7475 . . . . . . 7  |-  P.  e.  _V
43, 3xpex 4743 . . . . . 6  |-  ( P. 
X.  P. )  e.  _V
54qsex 6595 . . . . 5  |-  ( ( P.  X.  P. ) /.  ~R  )  e.  _V
62, 5eqeltri 2250 . . . 4  |-  R.  e.  _V
7 df-add 7825 . . . . 5  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
8 df-c 7820 . . . . . . . . 9  |-  CC  =  ( R.  X.  R. )
98eleq2i 2244 . . . . . . . 8  |-  ( x  e.  CC  <->  x  e.  ( R.  X.  R. )
)
108eleq2i 2244 . . . . . . . 8  |-  ( y  e.  CC  <->  y  e.  ( R.  X.  R. )
)
119, 10anbi12i 460 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  <->  ( x  e.  ( R. 
X.  R. )  /\  y  e.  ( R.  X.  R. ) ) )
1211anbi1i 458 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)  <->  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
1312oprabbii 5933 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
147, 13eqtri 2198 . . . 4  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
156, 14oprabex3 6133 . . 3  |-  +  e.  _V
16 opexg 4230 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
17 fvexg 5536 . . 3  |-  ( (  +  e.  _V  /\  <. A ,  B >.  e. 
_V )  ->  (  +  `  <. A ,  B >. )  e.  _V )
1815, 16, 17sylancr 414 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (  +  `  <. A ,  B >. )  e.  _V )
191, 18eqeltrid 2264 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739   <.cop 3597    X. cxp 4626   ` cfv 5218  (class class class)co 5878   {coprab 5879   /.cqs 6537   P.cnp 7293    ~R cer 7298   R.cnr 7299    +R cplr 7303   CCcc 7812    + caddc 7817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-qs 6544  df-ni 7306  df-nqqs 7350  df-inp 7468  df-nr 7729  df-c 7820  df-add 7825
This theorem is referenced by:  peano2nnnn  7855
  Copyright terms: Public domain W3C validator