ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpq2 Unicode version

Theorem dfmpq2 7542
Description: Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.)
Assertion
Ref Expression
dfmpq2  |-  .pQ  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )
) }
Distinct variable group:    x, y, z, w, v, u, f

Proof of Theorem dfmpq2
StepHypRef Expression
1 df-mpo 6006 . 2  |-  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  z  =  <. ( ( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
) }
2 df-mpq 7532 . 2  |-  .pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
)
3 1st2nd2 6321 . . . . . . . . . 10  |-  ( x  e.  ( N.  X.  N. )  ->  x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >. )
43eqeq1d 2238 . . . . . . . . 9  |-  ( x  e.  ( N.  X.  N. )  ->  ( x  =  <. w ,  v
>. 
<-> 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >. )
)
5 1st2nd2 6321 . . . . . . . . . 10  |-  ( y  e.  ( N.  X.  N. )  ->  y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >. )
65eqeq1d 2238 . . . . . . . . 9  |-  ( y  e.  ( N.  X.  N. )  ->  ( y  =  <. u ,  f
>. 
<-> 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. u ,  f >. )
)
74, 6bi2anan9 608 . . . . . . . 8  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  <->  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )
) )
87anbi1d 465 . . . . . . 7  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )  <->  ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )
) )
98bicomd 141 . . . . . 6  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )  <->  ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f )
>. ) ) )
1094exbidv 1916 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  ( E. w E. v E. u E. f ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )  <->  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f )
>. ) ) )
11 xp1st 6311 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  ( 1st `  x )  e.  N. )
12 xp2nd 6312 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  ( 2nd `  x )  e.  N. )
1311, 12jca 306 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  ( ( 1st `  x )  e.  N.  /\  ( 2nd `  x )  e. 
N. ) )
14 xp1st 6311 . . . . . . 7  |-  ( y  e.  ( N.  X.  N. )  ->  ( 1st `  y )  e.  N. )
15 xp2nd 6312 . . . . . . 7  |-  ( y  e.  ( N.  X.  N. )  ->  ( 2nd `  y )  e.  N. )
1614, 15jca 306 . . . . . 6  |-  ( y  e.  ( N.  X.  N. )  ->  ( ( 1st `  y )  e.  N.  /\  ( 2nd `  y )  e. 
N. ) )
17 simpll 527 . . . . . . . . . 10  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  w  =  ( 1st `  x
) )
18 simprl 529 . . . . . . . . . 10  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  u  =  ( 1st `  y
) )
1917, 18oveq12d 6019 . . . . . . . . 9  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
w  .N  u )  =  ( ( 1st `  x )  .N  ( 1st `  y ) ) )
20 simplr 528 . . . . . . . . . 10  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  v  =  ( 2nd `  x
) )
21 simprr 531 . . . . . . . . . 10  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  f  =  ( 2nd `  y
) )
2220, 21oveq12d 6019 . . . . . . . . 9  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
v  .N  f )  =  ( ( 2nd `  x )  .N  ( 2nd `  y ) ) )
2319, 22opeq12d 3865 . . . . . . . 8  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  <. (
w  .N  u ) ,  ( v  .N  f ) >.  =  <. ( ( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
)
2423eqeq2d 2241 . . . . . . 7  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
z  =  <. (
w  .N  u ) ,  ( v  .N  f ) >.  <->  z  =  <. ( ( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
) )
2524copsex4g 4333 . . . . . 6  |-  ( ( ( ( 1st `  x
)  e.  N.  /\  ( 2nd `  x )  e.  N. )  /\  ( ( 1st `  y
)  e.  N.  /\  ( 2nd `  y )  e.  N. ) )  ->  ( E. w E. v E. u E. f ( ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )  <->  z  =  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
2613, 16, 25syl2an 289 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  ( E. w E. v E. u E. f ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )  <->  z  =  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
2710, 26bitr3d 190 . . . 4  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f )
>. )  <->  z  =  <. ( ( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
) )
2827pm5.32i 454 . . 3  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )
)  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  z  =  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
2928oprabbii 6059 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  z  =  <. ( ( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
) }
301, 2, 293eqtr4i 2260 1  |-  .pQ  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   <.cop 3669    X. cxp 4717   ` cfv 5318  (class class class)co 6001   {coprab 6002    e. cmpo 6003   1stc1st 6284   2ndc2nd 6285   N.cnpi 7459    .N cmi 7461    .pQ cmpq 7464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-mpq 7532
This theorem is referenced by:  mulpipqqs  7560
  Copyright terms: Public domain W3C validator