| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfmpq2 | Unicode version | ||
| Description: Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.) |
| Ref | Expression |
|---|---|
| dfmpq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 5949 |
. 2
| |
| 2 | df-mpq 7458 |
. 2
| |
| 3 | 1st2nd2 6261 |
. . . . . . . . . 10
| |
| 4 | 3 | eqeq1d 2214 |
. . . . . . . . 9
|
| 5 | 1st2nd2 6261 |
. . . . . . . . . 10
| |
| 6 | 5 | eqeq1d 2214 |
. . . . . . . . 9
|
| 7 | 4, 6 | bi2anan9 606 |
. . . . . . . 8
|
| 8 | 7 | anbi1d 465 |
. . . . . . 7
|
| 9 | 8 | bicomd 141 |
. . . . . 6
|
| 10 | 9 | 4exbidv 1893 |
. . . . 5
|
| 11 | xp1st 6251 |
. . . . . . 7
| |
| 12 | xp2nd 6252 |
. . . . . . 7
| |
| 13 | 11, 12 | jca 306 |
. . . . . 6
|
| 14 | xp1st 6251 |
. . . . . . 7
| |
| 15 | xp2nd 6252 |
. . . . . . 7
| |
| 16 | 14, 15 | jca 306 |
. . . . . 6
|
| 17 | simpll 527 |
. . . . . . . . . 10
| |
| 18 | simprl 529 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | oveq12d 5962 |
. . . . . . . . 9
|
| 20 | simplr 528 |
. . . . . . . . . 10
| |
| 21 | simprr 531 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | oveq12d 5962 |
. . . . . . . . 9
|
| 23 | 19, 22 | opeq12d 3827 |
. . . . . . . 8
|
| 24 | 23 | eqeq2d 2217 |
. . . . . . 7
|
| 25 | 24 | copsex4g 4291 |
. . . . . 6
|
| 26 | 13, 16, 25 | syl2an 289 |
. . . . 5
|
| 27 | 10, 26 | bitr3d 190 |
. . . 4
|
| 28 | 27 | pm5.32i 454 |
. . 3
|
| 29 | 28 | oprabbii 6000 |
. 2
|
| 30 | 1, 2, 29 | 3eqtr4i 2236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-mpq 7458 |
| This theorem is referenced by: mulpipqqs 7486 |
| Copyright terms: Public domain | W3C validator |