| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfmpq2 | Unicode version | ||
| Description: Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.) |
| Ref | Expression |
|---|---|
| dfmpq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 5927 |
. 2
| |
| 2 | df-mpq 7412 |
. 2
| |
| 3 | 1st2nd2 6233 |
. . . . . . . . . 10
| |
| 4 | 3 | eqeq1d 2205 |
. . . . . . . . 9
|
| 5 | 1st2nd2 6233 |
. . . . . . . . . 10
| |
| 6 | 5 | eqeq1d 2205 |
. . . . . . . . 9
|
| 7 | 4, 6 | bi2anan9 606 |
. . . . . . . 8
|
| 8 | 7 | anbi1d 465 |
. . . . . . 7
|
| 9 | 8 | bicomd 141 |
. . . . . 6
|
| 10 | 9 | 4exbidv 1884 |
. . . . 5
|
| 11 | xp1st 6223 |
. . . . . . 7
| |
| 12 | xp2nd 6224 |
. . . . . . 7
| |
| 13 | 11, 12 | jca 306 |
. . . . . 6
|
| 14 | xp1st 6223 |
. . . . . . 7
| |
| 15 | xp2nd 6224 |
. . . . . . 7
| |
| 16 | 14, 15 | jca 306 |
. . . . . 6
|
| 17 | simpll 527 |
. . . . . . . . . 10
| |
| 18 | simprl 529 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | oveq12d 5940 |
. . . . . . . . 9
|
| 20 | simplr 528 |
. . . . . . . . . 10
| |
| 21 | simprr 531 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | oveq12d 5940 |
. . . . . . . . 9
|
| 23 | 19, 22 | opeq12d 3816 |
. . . . . . . 8
|
| 24 | 23 | eqeq2d 2208 |
. . . . . . 7
|
| 25 | 24 | copsex4g 4280 |
. . . . . 6
|
| 26 | 13, 16, 25 | syl2an 289 |
. . . . 5
|
| 27 | 10, 26 | bitr3d 190 |
. . . 4
|
| 28 | 27 | pm5.32i 454 |
. . 3
|
| 29 | 28 | oprabbii 5977 |
. 2
|
| 30 | 1, 2, 29 | 3eqtr4i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-mpq 7412 |
| This theorem is referenced by: mulpipqqs 7440 |
| Copyright terms: Public domain | W3C validator |