| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfmpq2 | Unicode version | ||
| Description: Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.) |
| Ref | Expression |
|---|---|
| dfmpq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 5972 |
. 2
| |
| 2 | df-mpq 7493 |
. 2
| |
| 3 | 1st2nd2 6284 |
. . . . . . . . . 10
| |
| 4 | 3 | eqeq1d 2216 |
. . . . . . . . 9
|
| 5 | 1st2nd2 6284 |
. . . . . . . . . 10
| |
| 6 | 5 | eqeq1d 2216 |
. . . . . . . . 9
|
| 7 | 4, 6 | bi2anan9 606 |
. . . . . . . 8
|
| 8 | 7 | anbi1d 465 |
. . . . . . 7
|
| 9 | 8 | bicomd 141 |
. . . . . 6
|
| 10 | 9 | 4exbidv 1894 |
. . . . 5
|
| 11 | xp1st 6274 |
. . . . . . 7
| |
| 12 | xp2nd 6275 |
. . . . . . 7
| |
| 13 | 11, 12 | jca 306 |
. . . . . 6
|
| 14 | xp1st 6274 |
. . . . . . 7
| |
| 15 | xp2nd 6275 |
. . . . . . 7
| |
| 16 | 14, 15 | jca 306 |
. . . . . 6
|
| 17 | simpll 527 |
. . . . . . . . . 10
| |
| 18 | simprl 529 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | oveq12d 5985 |
. . . . . . . . 9
|
| 20 | simplr 528 |
. . . . . . . . . 10
| |
| 21 | simprr 531 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | oveq12d 5985 |
. . . . . . . . 9
|
| 23 | 19, 22 | opeq12d 3841 |
. . . . . . . 8
|
| 24 | 23 | eqeq2d 2219 |
. . . . . . 7
|
| 25 | 24 | copsex4g 4309 |
. . . . . 6
|
| 26 | 13, 16, 25 | syl2an 289 |
. . . . 5
|
| 27 | 10, 26 | bitr3d 190 |
. . . 4
|
| 28 | 27 | pm5.32i 454 |
. . 3
|
| 29 | 28 | oprabbii 6023 |
. 2
|
| 30 | 1, 2, 29 | 3eqtr4i 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-mpq 7493 |
| This theorem is referenced by: mulpipqqs 7521 |
| Copyright terms: Public domain | W3C validator |