Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfmpq2 | Unicode version |
Description: Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.) |
Ref | Expression |
---|---|
dfmpq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 5858 | . 2 | |
2 | df-mpq 7307 | . 2 | |
3 | 1st2nd2 6154 | . . . . . . . . . 10 | |
4 | 3 | eqeq1d 2179 | . . . . . . . . 9 |
5 | 1st2nd2 6154 | . . . . . . . . . 10 | |
6 | 5 | eqeq1d 2179 | . . . . . . . . 9 |
7 | 4, 6 | bi2anan9 601 | . . . . . . . 8 |
8 | 7 | anbi1d 462 | . . . . . . 7 |
9 | 8 | bicomd 140 | . . . . . 6 |
10 | 9 | 4exbidv 1863 | . . . . 5 |
11 | xp1st 6144 | . . . . . . 7 | |
12 | xp2nd 6145 | . . . . . . 7 | |
13 | 11, 12 | jca 304 | . . . . . 6 |
14 | xp1st 6144 | . . . . . . 7 | |
15 | xp2nd 6145 | . . . . . . 7 | |
16 | 14, 15 | jca 304 | . . . . . 6 |
17 | simpll 524 | . . . . . . . . . 10 | |
18 | simprl 526 | . . . . . . . . . 10 | |
19 | 17, 18 | oveq12d 5871 | . . . . . . . . 9 |
20 | simplr 525 | . . . . . . . . . 10 | |
21 | simprr 527 | . . . . . . . . . 10 | |
22 | 20, 21 | oveq12d 5871 | . . . . . . . . 9 |
23 | 19, 22 | opeq12d 3773 | . . . . . . . 8 |
24 | 23 | eqeq2d 2182 | . . . . . . 7 |
25 | 24 | copsex4g 4232 | . . . . . 6 |
26 | 13, 16, 25 | syl2an 287 | . . . . 5 |
27 | 10, 26 | bitr3d 189 | . . . 4 |
28 | 27 | pm5.32i 451 | . . 3 |
29 | 28 | oprabbii 5908 | . 2 |
30 | 1, 2, 29 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cop 3586 cxp 4609 cfv 5198 (class class class)co 5853 coprab 5854 cmpo 5855 c1st 6117 c2nd 6118 cnpi 7234 cmi 7236 cmpq 7239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-mpq 7307 |
This theorem is referenced by: mulpipqqs 7335 |
Copyright terms: Public domain | W3C validator |