| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfmpq2 | Unicode version | ||
| Description: Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.) |
| Ref | Expression |
|---|---|
| dfmpq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 6006 |
. 2
| |
| 2 | df-mpq 7532 |
. 2
| |
| 3 | 1st2nd2 6321 |
. . . . . . . . . 10
| |
| 4 | 3 | eqeq1d 2238 |
. . . . . . . . 9
|
| 5 | 1st2nd2 6321 |
. . . . . . . . . 10
| |
| 6 | 5 | eqeq1d 2238 |
. . . . . . . . 9
|
| 7 | 4, 6 | bi2anan9 608 |
. . . . . . . 8
|
| 8 | 7 | anbi1d 465 |
. . . . . . 7
|
| 9 | 8 | bicomd 141 |
. . . . . 6
|
| 10 | 9 | 4exbidv 1916 |
. . . . 5
|
| 11 | xp1st 6311 |
. . . . . . 7
| |
| 12 | xp2nd 6312 |
. . . . . . 7
| |
| 13 | 11, 12 | jca 306 |
. . . . . 6
|
| 14 | xp1st 6311 |
. . . . . . 7
| |
| 15 | xp2nd 6312 |
. . . . . . 7
| |
| 16 | 14, 15 | jca 306 |
. . . . . 6
|
| 17 | simpll 527 |
. . . . . . . . . 10
| |
| 18 | simprl 529 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | oveq12d 6019 |
. . . . . . . . 9
|
| 20 | simplr 528 |
. . . . . . . . . 10
| |
| 21 | simprr 531 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | oveq12d 6019 |
. . . . . . . . 9
|
| 23 | 19, 22 | opeq12d 3865 |
. . . . . . . 8
|
| 24 | 23 | eqeq2d 2241 |
. . . . . . 7
|
| 25 | 24 | copsex4g 4333 |
. . . . . 6
|
| 26 | 13, 16, 25 | syl2an 289 |
. . . . 5
|
| 27 | 10, 26 | bitr3d 190 |
. . . 4
|
| 28 | 27 | pm5.32i 454 |
. . 3
|
| 29 | 28 | oprabbii 6059 |
. 2
|
| 30 | 1, 2, 29 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-mpq 7532 |
| This theorem is referenced by: mulpipqqs 7560 |
| Copyright terms: Public domain | W3C validator |