ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfxp3 Unicode version

Theorem dfxp3 6280
Description: Define the cross product of three classes. Compare df-xp 4681. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
dfxp3  |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C
) }
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z

Proof of Theorem dfxp3
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 biidd 172 . . 3  |-  ( u  =  <. x ,  y
>.  ->  ( z  e.  C  <->  z  e.  C
) )
21dfoprab4 6278 . 2  |-  { <. u ,  z >.  |  ( u  e.  ( A  X.  B )  /\  z  e.  C ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  e.  C
) }
3 df-xp 4681 . 2  |-  ( ( A  X.  B )  X.  C )  =  { <. u ,  z
>.  |  ( u  e.  ( A  X.  B
)  /\  z  e.  C ) }
4 df-3an 983 . . 3  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  <->  ( ( x  e.  A  /\  y  e.  B
)  /\  z  e.  C ) )
54oprabbii 6000 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  e.  C
) }
62, 3, 53eqtr4i 2236 1  |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   <.cop 3636   {copab 4104    X. cxp 4673   {coprab 5945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-oprab 5948  df-1st 6226  df-2nd 6227
This theorem is referenced by:  mpomulf  8062
  Copyright terms: Public domain W3C validator