ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovprc1 Unicode version

Theorem ovprc1 5983
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
Hypothesis
Ref Expression
ovprc1.1  |-  Rel  dom  F
Assertion
Ref Expression
ovprc1  |-  ( -.  A  e.  _V  ->  ( A F B )  =  (/) )

Proof of Theorem ovprc1
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  A  e.  _V )
21con3i 633 . 2  |-  ( -.  A  e.  _V  ->  -.  ( A  e.  _V  /\  B  e.  _V )
)
3 ovprc1.1 . . 3  |-  Rel  dom  F
43ovprc 5982 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
52, 4syl 14 1  |-  ( -.  A  e.  _V  ->  ( A F B )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   (/)c0 3460   dom cdm 4676   Rel wrel 4681  (class class class)co 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-dm 4686  df-iota 5233  df-fv 5280  df-ov 5949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator