ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovprc1 Unicode version

Theorem ovprc1 5924
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
Hypothesis
Ref Expression
ovprc1.1  |-  Rel  dom  F
Assertion
Ref Expression
ovprc1  |-  ( -.  A  e.  _V  ->  ( A F B )  =  (/) )

Proof of Theorem ovprc1
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  A  e.  _V )
21con3i 633 . 2  |-  ( -.  A  e.  _V  ->  -.  ( A  e.  _V  /\  B  e.  _V )
)
3 ovprc1.1 . . 3  |-  Rel  dom  F
43ovprc 5923 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
52, 4syl 14 1  |-  ( -.  A  e.  _V  ->  ( A F B )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   _Vcvv 2749   (/)c0 3434   dom cdm 4638   Rel wrel 4643  (class class class)co 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-rel 4645  df-dm 4648  df-iota 5190  df-fv 5236  df-ov 5891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator