ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovprc1 GIF version

Theorem ovprc1 5980
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc1 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc1
StepHypRef Expression
1 simpl 109 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
21con3i 633 . 2 𝐴 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 ovprc1.1 . . 3 Rel dom 𝐹
43ovprc 5979 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
52, 4syl 14 1 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1372  wcel 2175  Vcvv 2771  c0 3459  dom cdm 4674  Rel wrel 4679  (class class class)co 5943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-dm 4684  df-iota 5231  df-fv 5278  df-ov 5946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator