ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovprc2 Unicode version

Theorem ovprc2 5668
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1  |-  Rel  dom  F
Assertion
Ref Expression
ovprc2  |-  ( -.  B  e.  _V  ->  ( A F B )  =  (/) )

Proof of Theorem ovprc2
StepHypRef Expression
1 simpr 108 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  B  e.  _V )
21con3i 597 . 2  |-  ( -.  B  e.  _V  ->  -.  ( A  e.  _V  /\  B  e.  _V )
)
3 ovprc1.1 . . 3  |-  Rel  dom  F
43ovprc 5666 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
52, 4syl 14 1  |-  ( -.  B  e.  _V  ->  ( A F B )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   _Vcvv 2619   (/)c0 3284   dom cdm 4428   Rel wrel 4433  (class class class)co 5634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-xp 4434  df-rel 4435  df-dm 4438  df-iota 4967  df-fv 5010  df-ov 5637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator