| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano3 | GIF version | ||
| Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano3 | ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsuceq0g 4473 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ≠ wne 2377 ∅c0 3464 suc csuc 4420 ωcom 4646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3172 df-un 3174 df-nul 3465 df-sn 3644 df-suc 4426 |
| This theorem is referenced by: nndceq0 4674 frecabcl 6498 frecsuclem 6505 nnsucsssuc 6591 php5 6970 findcard2 7001 findcard2s 7002 omp1eomlem 7211 ctmlemr 7225 nnsf 16083 peano4nninf 16084 |
| Copyright terms: Public domain | W3C validator |