ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano3 GIF version

Theorem peano3 4597
Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano3 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)

Proof of Theorem peano3
StepHypRef Expression
1 nsuceq0g 4420 1 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  wne 2347  c0 3424  suc csuc 4367  ωcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-sn 3600  df-suc 4373
This theorem is referenced by:  nndceq0  4619  frecabcl  6402  frecsuclem  6409  nnsucsssuc  6495  php5  6860  findcard2  6891  findcard2s  6892  omp1eomlem  7095  ctmlemr  7109  nnsf  14839  peano4nninf  14840
  Copyright terms: Public domain W3C validator