Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano3 | GIF version |
Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano3 | ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsuceq0g 4412 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ≠ wne 2345 ∅c0 3420 suc csuc 4359 ωcom 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-v 2737 df-dif 3129 df-un 3131 df-nul 3421 df-sn 3595 df-suc 4365 |
This theorem is referenced by: nndceq0 4611 frecabcl 6390 frecsuclem 6397 nnsucsssuc 6483 php5 6848 findcard2 6879 findcard2s 6880 omp1eomlem 7083 ctmlemr 7097 nnsf 14295 peano4nninf 14296 |
Copyright terms: Public domain | W3C validator |