| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano3 | GIF version | ||
| Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano3 | ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsuceq0g 4464 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ≠ wne 2375 ∅c0 3459 suc csuc 4411 ωcom 4637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-v 2773 df-dif 3167 df-un 3169 df-nul 3460 df-sn 3638 df-suc 4417 |
| This theorem is referenced by: nndceq0 4665 frecabcl 6484 frecsuclem 6491 nnsucsssuc 6577 php5 6954 findcard2 6985 findcard2s 6986 omp1eomlem 7195 ctmlemr 7209 nnsf 15875 peano4nninf 15876 |
| Copyright terms: Public domain | W3C validator |