ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano3 GIF version

Theorem peano3 4652
Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano3 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)

Proof of Theorem peano3
StepHypRef Expression
1 nsuceq0g 4473 1 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wne 2377  c0 3464  suc csuc 4420  ωcom 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3172  df-un 3174  df-nul 3465  df-sn 3644  df-suc 4426
This theorem is referenced by:  nndceq0  4674  frecabcl  6498  frecsuclem  6505  nnsucsssuc  6591  php5  6970  findcard2  7001  findcard2s  7002  omp1eomlem  7211  ctmlemr  7225  nnsf  16083  peano4nninf  16084
  Copyright terms: Public domain W3C validator