ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano3 GIF version

Theorem peano3 4628
Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano3 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)

Proof of Theorem peano3
StepHypRef Expression
1 nsuceq0g 4449 1 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wne 2364  c0 3446  suc csuc 4396  ωcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-un 3157  df-nul 3447  df-sn 3624  df-suc 4402
This theorem is referenced by:  nndceq0  4650  frecabcl  6452  frecsuclem  6459  nnsucsssuc  6545  php5  6914  findcard2  6945  findcard2s  6946  omp1eomlem  7153  ctmlemr  7167  nnsf  15495  peano4nninf  15496
  Copyright terms: Public domain W3C validator