| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndceq0 | Unicode version | ||
| Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| nndceq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. . . 4
| |
| 2 | 1 | notbid 671 |
. . . 4
|
| 3 | 1, 2 | orbi12d 798 |
. . 3
|
| 4 | eqeq1 2236 |
. . . 4
| |
| 5 | 4 | notbid 671 |
. . . 4
|
| 6 | 4, 5 | orbi12d 798 |
. . 3
|
| 7 | eqeq1 2236 |
. . . 4
| |
| 8 | 7 | notbid 671 |
. . . 4
|
| 9 | 7, 8 | orbi12d 798 |
. . 3
|
| 10 | eqeq1 2236 |
. . . 4
| |
| 11 | 10 | notbid 671 |
. . . 4
|
| 12 | 10, 11 | orbi12d 798 |
. . 3
|
| 13 | eqid 2229 |
. . . 4
| |
| 14 | 13 | orci 736 |
. . 3
|
| 15 | peano3 4688 |
. . . . . 6
| |
| 16 | 15 | neneqd 2421 |
. . . . 5
|
| 17 | 16 | olcd 739 |
. . . 4
|
| 18 | 17 | a1d 22 |
. . 3
|
| 19 | 3, 6, 9, 12, 14, 18 | finds 4692 |
. 2
|
| 20 | df-dc 840 |
. 2
| |
| 21 | 19, 20 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: omp1eomlem 7261 ctmlemr 7275 nnnninfeq2 7296 nninfisol 7300 elni2 7501 indpi 7529 nnsf 16371 peano4nninf 16372 |
| Copyright terms: Public domain | W3C validator |