Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nndceq0 | Unicode version |
Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
Ref | Expression |
---|---|
nndceq0 | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . . 4 | |
2 | 1 | notbid 657 | . . . 4 |
3 | 1, 2 | orbi12d 783 | . . 3 |
4 | eqeq1 2172 | . . . 4 | |
5 | 4 | notbid 657 | . . . 4 |
6 | 4, 5 | orbi12d 783 | . . 3 |
7 | eqeq1 2172 | . . . 4 | |
8 | 7 | notbid 657 | . . . 4 |
9 | 7, 8 | orbi12d 783 | . . 3 |
10 | eqeq1 2172 | . . . 4 | |
11 | 10 | notbid 657 | . . . 4 |
12 | 10, 11 | orbi12d 783 | . . 3 |
13 | eqid 2165 | . . . 4 | |
14 | 13 | orci 721 | . . 3 |
15 | peano3 4573 | . . . . . 6 | |
16 | 15 | neneqd 2357 | . . . . 5 |
17 | 16 | olcd 724 | . . . 4 |
18 | 17 | a1d 22 | . . 3 |
19 | 3, 6, 9, 12, 14, 18 | finds 4577 | . 2 |
20 | df-dc 825 | . 2 DECID | |
21 | 19, 20 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 698 DECID wdc 824 wceq 1343 wcel 2136 c0 3409 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: omp1eomlem 7059 ctmlemr 7073 nnnninfeq2 7093 nninfisol 7097 elni2 7255 indpi 7283 nnsf 13885 peano4nninf 13886 |
Copyright terms: Public domain | W3C validator |