ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq0 Unicode version

Theorem nndceq0 4650
Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
nndceq0  |-  ( A  e.  om  -> DECID  A  =  (/) )

Proof of Theorem nndceq0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . . 4  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
21notbid 668 . . . 4  |-  ( x  =  (/)  ->  ( -.  x  =  (/)  <->  -.  (/)  =  (/) ) )
31, 2orbi12d 794 . . 3  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  -.  x  =  (/) )  <->  ( (/)  =  (/)  \/ 
-.  (/)  =  (/) ) ) )
4 eqeq1 2200 . . . 4  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
54notbid 668 . . . 4  |-  ( x  =  y  ->  ( -.  x  =  (/)  <->  -.  y  =  (/) ) )
64, 5orbi12d 794 . . 3  |-  ( x  =  y  ->  (
( x  =  (/)  \/ 
-.  x  =  (/) ) 
<->  ( y  =  (/)  \/ 
-.  y  =  (/) ) ) )
7 eqeq1 2200 . . . 4  |-  ( x  =  suc  y  -> 
( x  =  (/)  <->  suc  y  =  (/) ) )
87notbid 668 . . . 4  |-  ( x  =  suc  y  -> 
( -.  x  =  (/) 
<->  -.  suc  y  =  (/) ) )
97, 8orbi12d 794 . . 3  |-  ( x  =  suc  y  -> 
( ( x  =  (/)  \/  -.  x  =  (/) )  <->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) ) )
10 eqeq1 2200 . . . 4  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
1110notbid 668 . . . 4  |-  ( x  =  A  ->  ( -.  x  =  (/)  <->  -.  A  =  (/) ) )
1210, 11orbi12d 794 . . 3  |-  ( x  =  A  ->  (
( x  =  (/)  \/ 
-.  x  =  (/) ) 
<->  ( A  =  (/)  \/ 
-.  A  =  (/) ) ) )
13 eqid 2193 . . . 4  |-  (/)  =  (/)
1413orci 732 . . 3  |-  ( (/)  =  (/)  \/  -.  (/)  =  (/) )
15 peano3 4628 . . . . . 6  |-  ( y  e.  om  ->  suc  y  =/=  (/) )
1615neneqd 2385 . . . . 5  |-  ( y  e.  om  ->  -.  suc  y  =  (/) )
1716olcd 735 . . . 4  |-  ( y  e.  om  ->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) )
1817a1d 22 . . 3  |-  ( y  e.  om  ->  (
( y  =  (/)  \/ 
-.  y  =  (/) )  ->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) ) )
193, 6, 9, 12, 14, 18finds 4632 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  -.  A  =  (/) ) )
20 df-dc 836 . 2  |-  (DECID  A  =  (/) 
<->  ( A  =  (/)  \/ 
-.  A  =  (/) ) )
2119, 20sylibr 134 1  |-  ( A  e.  om  -> DECID  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164   (/)c0 3446   suc csuc 4396   omcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623
This theorem is referenced by:  omp1eomlem  7153  ctmlemr  7167  nnnninfeq2  7188  nninfisol  7192  elni2  7374  indpi  7402  nnsf  15495  peano4nninf  15496
  Copyright terms: Public domain W3C validator