| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndceq0 | Unicode version | ||
| Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| nndceq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2214 |
. . . 4
| |
| 2 | 1 | notbid 669 |
. . . 4
|
| 3 | 1, 2 | orbi12d 795 |
. . 3
|
| 4 | eqeq1 2214 |
. . . 4
| |
| 5 | 4 | notbid 669 |
. . . 4
|
| 6 | 4, 5 | orbi12d 795 |
. . 3
|
| 7 | eqeq1 2214 |
. . . 4
| |
| 8 | 7 | notbid 669 |
. . . 4
|
| 9 | 7, 8 | orbi12d 795 |
. . 3
|
| 10 | eqeq1 2214 |
. . . 4
| |
| 11 | 10 | notbid 669 |
. . . 4
|
| 12 | 10, 11 | orbi12d 795 |
. . 3
|
| 13 | eqid 2207 |
. . . 4
| |
| 14 | 13 | orci 733 |
. . 3
|
| 15 | peano3 4662 |
. . . . . 6
| |
| 16 | 15 | neneqd 2399 |
. . . . 5
|
| 17 | 16 | olcd 736 |
. . . 4
|
| 18 | 17 | a1d 22 |
. . 3
|
| 19 | 3, 6, 9, 12, 14, 18 | finds 4666 |
. 2
|
| 20 | df-dc 837 |
. 2
| |
| 21 | 19, 20 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: omp1eomlem 7222 ctmlemr 7236 nnnninfeq2 7257 nninfisol 7261 elni2 7462 indpi 7490 nnsf 16144 peano4nninf 16145 |
| Copyright terms: Public domain | W3C validator |