| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndceq0 | Unicode version | ||
| Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| nndceq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 |
. . . 4
| |
| 2 | 1 | notbid 668 |
. . . 4
|
| 3 | 1, 2 | orbi12d 794 |
. . 3
|
| 4 | eqeq1 2203 |
. . . 4
| |
| 5 | 4 | notbid 668 |
. . . 4
|
| 6 | 4, 5 | orbi12d 794 |
. . 3
|
| 7 | eqeq1 2203 |
. . . 4
| |
| 8 | 7 | notbid 668 |
. . . 4
|
| 9 | 7, 8 | orbi12d 794 |
. . 3
|
| 10 | eqeq1 2203 |
. . . 4
| |
| 11 | 10 | notbid 668 |
. . . 4
|
| 12 | 10, 11 | orbi12d 794 |
. . 3
|
| 13 | eqid 2196 |
. . . 4
| |
| 14 | 13 | orci 732 |
. . 3
|
| 15 | peano3 4633 |
. . . . . 6
| |
| 16 | 15 | neneqd 2388 |
. . . . 5
|
| 17 | 16 | olcd 735 |
. . . 4
|
| 18 | 17 | a1d 22 |
. . 3
|
| 19 | 3, 6, 9, 12, 14, 18 | finds 4637 |
. 2
|
| 20 | df-dc 836 |
. 2
| |
| 21 | 19, 20 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: omp1eomlem 7169 ctmlemr 7183 nnnninfeq2 7204 nninfisol 7208 elni2 7398 indpi 7426 nnsf 15736 peano4nninf 15737 |
| Copyright terms: Public domain | W3C validator |