ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq0 Unicode version

Theorem nndceq0 4710
Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
nndceq0  |-  ( A  e.  om  -> DECID  A  =  (/) )

Proof of Theorem nndceq0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . . 4  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
21notbid 671 . . . 4  |-  ( x  =  (/)  ->  ( -.  x  =  (/)  <->  -.  (/)  =  (/) ) )
31, 2orbi12d 798 . . 3  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  -.  x  =  (/) )  <->  ( (/)  =  (/)  \/ 
-.  (/)  =  (/) ) ) )
4 eqeq1 2236 . . . 4  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
54notbid 671 . . . 4  |-  ( x  =  y  ->  ( -.  x  =  (/)  <->  -.  y  =  (/) ) )
64, 5orbi12d 798 . . 3  |-  ( x  =  y  ->  (
( x  =  (/)  \/ 
-.  x  =  (/) ) 
<->  ( y  =  (/)  \/ 
-.  y  =  (/) ) ) )
7 eqeq1 2236 . . . 4  |-  ( x  =  suc  y  -> 
( x  =  (/)  <->  suc  y  =  (/) ) )
87notbid 671 . . . 4  |-  ( x  =  suc  y  -> 
( -.  x  =  (/) 
<->  -.  suc  y  =  (/) ) )
97, 8orbi12d 798 . . 3  |-  ( x  =  suc  y  -> 
( ( x  =  (/)  \/  -.  x  =  (/) )  <->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) ) )
10 eqeq1 2236 . . . 4  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
1110notbid 671 . . . 4  |-  ( x  =  A  ->  ( -.  x  =  (/)  <->  -.  A  =  (/) ) )
1210, 11orbi12d 798 . . 3  |-  ( x  =  A  ->  (
( x  =  (/)  \/ 
-.  x  =  (/) ) 
<->  ( A  =  (/)  \/ 
-.  A  =  (/) ) ) )
13 eqid 2229 . . . 4  |-  (/)  =  (/)
1413orci 736 . . 3  |-  ( (/)  =  (/)  \/  -.  (/)  =  (/) )
15 peano3 4688 . . . . . 6  |-  ( y  e.  om  ->  suc  y  =/=  (/) )
1615neneqd 2421 . . . . 5  |-  ( y  e.  om  ->  -.  suc  y  =  (/) )
1716olcd 739 . . . 4  |-  ( y  e.  om  ->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) )
1817a1d 22 . . 3  |-  ( y  e.  om  ->  (
( y  =  (/)  \/ 
-.  y  =  (/) )  ->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) ) )
193, 6, 9, 12, 14, 18finds 4692 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  -.  A  =  (/) ) )
20 df-dc 840 . 2  |-  (DECID  A  =  (/) 
<->  ( A  =  (/)  \/ 
-.  A  =  (/) ) )
2119, 20sylibr 134 1  |-  ( A  e.  om  -> DECID  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   (/)c0 3491   suc csuc 4456   omcom 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-suc 4462  df-iom 4683
This theorem is referenced by:  omp1eomlem  7261  ctmlemr  7275  nnnninfeq2  7296  nninfisol  7300  elni2  7501  indpi  7529  nnsf  16371  peano4nninf  16372
  Copyright terms: Public domain W3C validator