ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq0 Unicode version

Theorem nndceq0 4684
Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
nndceq0  |-  ( A  e.  om  -> DECID  A  =  (/) )

Proof of Theorem nndceq0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2214 . . . 4  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
21notbid 669 . . . 4  |-  ( x  =  (/)  ->  ( -.  x  =  (/)  <->  -.  (/)  =  (/) ) )
31, 2orbi12d 795 . . 3  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  -.  x  =  (/) )  <->  ( (/)  =  (/)  \/ 
-.  (/)  =  (/) ) ) )
4 eqeq1 2214 . . . 4  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
54notbid 669 . . . 4  |-  ( x  =  y  ->  ( -.  x  =  (/)  <->  -.  y  =  (/) ) )
64, 5orbi12d 795 . . 3  |-  ( x  =  y  ->  (
( x  =  (/)  \/ 
-.  x  =  (/) ) 
<->  ( y  =  (/)  \/ 
-.  y  =  (/) ) ) )
7 eqeq1 2214 . . . 4  |-  ( x  =  suc  y  -> 
( x  =  (/)  <->  suc  y  =  (/) ) )
87notbid 669 . . . 4  |-  ( x  =  suc  y  -> 
( -.  x  =  (/) 
<->  -.  suc  y  =  (/) ) )
97, 8orbi12d 795 . . 3  |-  ( x  =  suc  y  -> 
( ( x  =  (/)  \/  -.  x  =  (/) )  <->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) ) )
10 eqeq1 2214 . . . 4  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
1110notbid 669 . . . 4  |-  ( x  =  A  ->  ( -.  x  =  (/)  <->  -.  A  =  (/) ) )
1210, 11orbi12d 795 . . 3  |-  ( x  =  A  ->  (
( x  =  (/)  \/ 
-.  x  =  (/) ) 
<->  ( A  =  (/)  \/ 
-.  A  =  (/) ) ) )
13 eqid 2207 . . . 4  |-  (/)  =  (/)
1413orci 733 . . 3  |-  ( (/)  =  (/)  \/  -.  (/)  =  (/) )
15 peano3 4662 . . . . . 6  |-  ( y  e.  om  ->  suc  y  =/=  (/) )
1615neneqd 2399 . . . . 5  |-  ( y  e.  om  ->  -.  suc  y  =  (/) )
1716olcd 736 . . . 4  |-  ( y  e.  om  ->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) )
1817a1d 22 . . 3  |-  ( y  e.  om  ->  (
( y  =  (/)  \/ 
-.  y  =  (/) )  ->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) ) )
193, 6, 9, 12, 14, 18finds 4666 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  -.  A  =  (/) ) )
20 df-dc 837 . 2  |-  (DECID  A  =  (/) 
<->  ( A  =  (/)  \/ 
-.  A  =  (/) ) )
2119, 20sylibr 134 1  |-  ( A  e.  om  -> DECID  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2178   (/)c0 3468   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657
This theorem is referenced by:  omp1eomlem  7222  ctmlemr  7236  nnnninfeq2  7257  nninfisol  7261  elni2  7462  indpi  7490  nnsf  16144  peano4nninf  16145
  Copyright terms: Public domain W3C validator