ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq0 Unicode version

Theorem nndceq0 4595
Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
nndceq0  |-  ( A  e.  om  -> DECID  A  =  (/) )

Proof of Theorem nndceq0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2172 . . . 4  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
21notbid 657 . . . 4  |-  ( x  =  (/)  ->  ( -.  x  =  (/)  <->  -.  (/)  =  (/) ) )
31, 2orbi12d 783 . . 3  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  -.  x  =  (/) )  <->  ( (/)  =  (/)  \/ 
-.  (/)  =  (/) ) ) )
4 eqeq1 2172 . . . 4  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
54notbid 657 . . . 4  |-  ( x  =  y  ->  ( -.  x  =  (/)  <->  -.  y  =  (/) ) )
64, 5orbi12d 783 . . 3  |-  ( x  =  y  ->  (
( x  =  (/)  \/ 
-.  x  =  (/) ) 
<->  ( y  =  (/)  \/ 
-.  y  =  (/) ) ) )
7 eqeq1 2172 . . . 4  |-  ( x  =  suc  y  -> 
( x  =  (/)  <->  suc  y  =  (/) ) )
87notbid 657 . . . 4  |-  ( x  =  suc  y  -> 
( -.  x  =  (/) 
<->  -.  suc  y  =  (/) ) )
97, 8orbi12d 783 . . 3  |-  ( x  =  suc  y  -> 
( ( x  =  (/)  \/  -.  x  =  (/) )  <->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) ) )
10 eqeq1 2172 . . . 4  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
1110notbid 657 . . . 4  |-  ( x  =  A  ->  ( -.  x  =  (/)  <->  -.  A  =  (/) ) )
1210, 11orbi12d 783 . . 3  |-  ( x  =  A  ->  (
( x  =  (/)  \/ 
-.  x  =  (/) ) 
<->  ( A  =  (/)  \/ 
-.  A  =  (/) ) ) )
13 eqid 2165 . . . 4  |-  (/)  =  (/)
1413orci 721 . . 3  |-  ( (/)  =  (/)  \/  -.  (/)  =  (/) )
15 peano3 4573 . . . . . 6  |-  ( y  e.  om  ->  suc  y  =/=  (/) )
1615neneqd 2357 . . . . 5  |-  ( y  e.  om  ->  -.  suc  y  =  (/) )
1716olcd 724 . . . 4  |-  ( y  e.  om  ->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) )
1817a1d 22 . . 3  |-  ( y  e.  om  ->  (
( y  =  (/)  \/ 
-.  y  =  (/) )  ->  ( suc  y  =  (/)  \/  -.  suc  y  =  (/) ) ) )
193, 6, 9, 12, 14, 18finds 4577 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  -.  A  =  (/) ) )
20 df-dc 825 . 2  |-  (DECID  A  =  (/) 
<->  ( A  =  (/)  \/ 
-.  A  =  (/) ) )
2119, 20sylibr 133 1  |-  ( A  e.  om  -> DECID  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136   (/)c0 3409   suc csuc 4343   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568
This theorem is referenced by:  omp1eomlem  7059  ctmlemr  7073  nnnninfeq2  7093  nninfisol  7097  elni2  7255  indpi  7283  nnsf  13885  peano4nninf  13886
  Copyright terms: Public domain W3C validator