![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pmex | GIF version |
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.) |
Ref | Expression |
---|---|
pmex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 266 | . . 3 ⊢ ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵)) ↔ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)) | |
2 | 1 | abbii 2309 | . 2 ⊢ {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} = {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} |
3 | xpexg 4773 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
4 | abssexg 4211 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V) |
6 | 2, 5 | eqeltrid 2280 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 {cab 2179 Vcvv 2760 ⊆ wss 3153 × cxp 4657 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-opab 4091 df-xp 4665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |