ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmex GIF version

Theorem pmex 6808
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
pmex ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem pmex
StepHypRef Expression
1 ancom 266 . . 3 ((Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵)) ↔ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓))
21abbii 2345 . 2 {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} = {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)}
3 xpexg 4833 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
4 abssexg 4266 . . 3 ((𝐴 × 𝐵) ∈ V → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V)
53, 4syl 14 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V)
62, 5eqeltrid 2316 1 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  {cab 2215  Vcvv 2799  wss 3197   × cxp 4717  Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-opab 4146  df-xp 4725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator