ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1if GIF version

Theorem pw1if 7406
Description: Expressing a truth value in terms of an if expression. (Contributed by Jim Kingdon, 10-Jan-2026.)
Assertion
Ref Expression
pw1if (𝐴 ∈ 𝒫 1o → if(𝐴 = 1o, 1o, ∅) = 𝐴)

Proof of Theorem pw1if
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → 𝑥 ∈ if(𝐴 = 1o, 1o, ∅))
2 elif 3614 . . . . . . 7 (𝑥 ∈ if(𝐴 = 1o, 1o, ∅) ↔ ((𝐴 = 1o𝑥 ∈ 1o) ∨ (¬ 𝐴 = 1o𝑥 ∈ ∅)))
3 noel 3495 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
43intnan 934 . . . . . . . 8 ¬ (¬ 𝐴 = 1o𝑥 ∈ ∅)
54biorfi 751 . . . . . . 7 ((𝐴 = 1o𝑥 ∈ 1o) ↔ ((𝐴 = 1o𝑥 ∈ 1o) ∨ (¬ 𝐴 = 1o𝑥 ∈ ∅)))
62, 5bitr4i 187 . . . . . 6 (𝑥 ∈ if(𝐴 = 1o, 1o, ∅) ↔ (𝐴 = 1o𝑥 ∈ 1o))
71, 6sylib 122 . . . . 5 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → (𝐴 = 1o𝑥 ∈ 1o))
87simprd 114 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → 𝑥 ∈ 1o)
97simpld 112 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → 𝐴 = 1o)
108, 9eleqtrrd 2309 . . 3 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → 𝑥𝐴)
11 elex2 2816 . . . . 5 (𝑥𝐴 → ∃𝑦 𝑦𝐴)
12 pw1m 7405 . . . . 5 ((𝐴 ∈ 𝒫 1o ∧ ∃𝑦 𝑦𝐴) → 𝐴 = 1o)
1311, 12sylan2 286 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝐴 = 1o)
14 simpr 110 . . . . 5 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥𝐴)
1514, 13eleqtrd 2308 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 ∈ 1o)
1613, 15, 6sylanbrc 417 . . 3 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 ∈ if(𝐴 = 1o, 1o, ∅))
1710, 16impbida 598 . 2 (𝐴 ∈ 𝒫 1o → (𝑥 ∈ if(𝐴 = 1o, 1o, ∅) ↔ 𝑥𝐴))
1817eqrdv 2227 1 (𝐴 ∈ 𝒫 1o → if(𝐴 = 1o, 1o, ∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  c0 3491  ifcif 3602  𝒫 cpw 3649  1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-suc 4461  df-1o 6560
This theorem is referenced by:  pw1map  16320
  Copyright terms: Public domain W3C validator