| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . . . 6
⊢ ((𝐴 ∈ 𝒫 1o
∧ 𝑥 ∈ if(𝐴 = 1o, 1o,
∅)) → 𝑥 ∈
if(𝐴 = 1o,
1o, ∅)) |
| 2 | | elif 3587 |
. . . . . . 7
⊢ (𝑥 ∈ if(𝐴 = 1o, 1o, ∅)
↔ ((𝐴 = 1o
∧ 𝑥 ∈
1o) ∨ (¬ 𝐴 = 1o ∧ 𝑥 ∈ ∅))) |
| 3 | | noel 3468 |
. . . . . . . . 9
⊢ ¬
𝑥 ∈
∅ |
| 4 | 3 | intnan 931 |
. . . . . . . 8
⊢ ¬
(¬ 𝐴 = 1o
∧ 𝑥 ∈
∅) |
| 5 | 4 | biorfi 748 |
. . . . . . 7
⊢ ((𝐴 = 1o ∧ 𝑥 ∈ 1o) ↔
((𝐴 = 1o ∧
𝑥 ∈ 1o)
∨ (¬ 𝐴 =
1o ∧ 𝑥
∈ ∅))) |
| 6 | 2, 5 | bitr4i 187 |
. . . . . 6
⊢ (𝑥 ∈ if(𝐴 = 1o, 1o, ∅)
↔ (𝐴 = 1o
∧ 𝑥 ∈
1o)) |
| 7 | 1, 6 | sylib 122 |
. . . . 5
⊢ ((𝐴 ∈ 𝒫 1o
∧ 𝑥 ∈ if(𝐴 = 1o, 1o,
∅)) → (𝐴 =
1o ∧ 𝑥
∈ 1o)) |
| 8 | 7 | simprd 114 |
. . . 4
⊢ ((𝐴 ∈ 𝒫 1o
∧ 𝑥 ∈ if(𝐴 = 1o, 1o,
∅)) → 𝑥 ∈
1o) |
| 9 | 7 | simpld 112 |
. . . 4
⊢ ((𝐴 ∈ 𝒫 1o
∧ 𝑥 ∈ if(𝐴 = 1o, 1o,
∅)) → 𝐴 =
1o) |
| 10 | 8, 9 | eleqtrrd 2286 |
. . 3
⊢ ((𝐴 ∈ 𝒫 1o
∧ 𝑥 ∈ if(𝐴 = 1o, 1o,
∅)) → 𝑥 ∈
𝐴) |
| 11 | | elex2 2790 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐴) |
| 12 | | pw1m 7355 |
. . . . 5
⊢ ((𝐴 ∈ 𝒫 1o
∧ ∃𝑦 𝑦 ∈ 𝐴) → 𝐴 = 1o) |
| 13 | 11, 12 | sylan2 286 |
. . . 4
⊢ ((𝐴 ∈ 𝒫 1o
∧ 𝑥 ∈ 𝐴) → 𝐴 = 1o) |
| 14 | | simpr 110 |
. . . . 5
⊢ ((𝐴 ∈ 𝒫 1o
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 15 | 14, 13 | eleqtrd 2285 |
. . . 4
⊢ ((𝐴 ∈ 𝒫 1o
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 1o) |
| 16 | 13, 15, 6 | sylanbrc 417 |
. . 3
⊢ ((𝐴 ∈ 𝒫 1o
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ if(𝐴 = 1o, 1o,
∅)) |
| 17 | 10, 16 | impbida 596 |
. 2
⊢ (𝐴 ∈ 𝒫 1o
→ (𝑥 ∈ if(𝐴 = 1o, 1o,
∅) ↔ 𝑥 ∈
𝐴)) |
| 18 | 17 | eqrdv 2204 |
1
⊢ (𝐴 ∈ 𝒫 1o
→ if(𝐴 =
1o, 1o, ∅) = 𝐴) |