ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1if GIF version

Theorem pw1if 7356
Description: Expressing a truth value in terms of an if expression. (Contributed by Jim Kingdon, 10-Jan-2026.)
Assertion
Ref Expression
pw1if (𝐴 ∈ 𝒫 1o → if(𝐴 = 1o, 1o, ∅) = 𝐴)

Proof of Theorem pw1if
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → 𝑥 ∈ if(𝐴 = 1o, 1o, ∅))
2 elif 3587 . . . . . . 7 (𝑥 ∈ if(𝐴 = 1o, 1o, ∅) ↔ ((𝐴 = 1o𝑥 ∈ 1o) ∨ (¬ 𝐴 = 1o𝑥 ∈ ∅)))
3 noel 3468 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
43intnan 931 . . . . . . . 8 ¬ (¬ 𝐴 = 1o𝑥 ∈ ∅)
54biorfi 748 . . . . . . 7 ((𝐴 = 1o𝑥 ∈ 1o) ↔ ((𝐴 = 1o𝑥 ∈ 1o) ∨ (¬ 𝐴 = 1o𝑥 ∈ ∅)))
62, 5bitr4i 187 . . . . . 6 (𝑥 ∈ if(𝐴 = 1o, 1o, ∅) ↔ (𝐴 = 1o𝑥 ∈ 1o))
71, 6sylib 122 . . . . 5 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → (𝐴 = 1o𝑥 ∈ 1o))
87simprd 114 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → 𝑥 ∈ 1o)
97simpld 112 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → 𝐴 = 1o)
108, 9eleqtrrd 2286 . . 3 ((𝐴 ∈ 𝒫 1o𝑥 ∈ if(𝐴 = 1o, 1o, ∅)) → 𝑥𝐴)
11 elex2 2790 . . . . 5 (𝑥𝐴 → ∃𝑦 𝑦𝐴)
12 pw1m 7355 . . . . 5 ((𝐴 ∈ 𝒫 1o ∧ ∃𝑦 𝑦𝐴) → 𝐴 = 1o)
1311, 12sylan2 286 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝐴 = 1o)
14 simpr 110 . . . . 5 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥𝐴)
1514, 13eleqtrd 2285 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 ∈ 1o)
1613, 15, 6sylanbrc 417 . . 3 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 ∈ if(𝐴 = 1o, 1o, ∅))
1710, 16impbida 596 . 2 (𝐴 ∈ 𝒫 1o → (𝑥 ∈ if(𝐴 = 1o, 1o, ∅) ↔ 𝑥𝐴))
1817eqrdv 2204 1 (𝐴 ∈ 𝒫 1o → if(𝐴 = 1o, 1o, ∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710   = wceq 1373  wex 1516  wcel 2177  c0 3464  ifcif 3575  𝒫 cpw 3621  1oc1o 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-suc 4426  df-1o 6515
This theorem is referenced by:  pw1map  16073
  Copyright terms: Public domain W3C validator