| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1map | Unicode version | ||
| Description: Mapping between |
| Ref | Expression |
|---|---|
| pw1map.f |
|
| Ref | Expression |
|---|---|
| pw1map |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1map.f |
. 2
| |
| 2 | ssrab2 3309 |
. . . 4
| |
| 3 | elpw2g 4239 |
. . . 4
| |
| 4 | 2, 3 | mpbiri 168 |
. . 3
|
| 5 | 4 | adantr 276 |
. 2
|
| 6 | fmelpw1o 7428 |
. . . . 5
| |
| 7 | 6 | a1i 9 |
. . . 4
|
| 8 | 7 | fmpttd 5789 |
. . 3
|
| 9 | 1oex 6568 |
. . . . . 6
| |
| 10 | 9 | pwex 4266 |
. . . . 5
|
| 11 | 10 | a1i 9 |
. . . 4
|
| 12 | simpl 109 |
. . . 4
| |
| 13 | 11, 12 | elmapd 6807 |
. . 3
|
| 14 | 8, 13 | mpbird 167 |
. 2
|
| 15 | simplr 528 |
. . . . . . . . 9
| |
| 16 | 15 | fveq1d 5628 |
. . . . . . . 8
|
| 17 | eqid 2229 |
. . . . . . . . 9
| |
| 18 | elequ1 2204 |
. . . . . . . . . 10
| |
| 19 | 18 | ifbid 3624 |
. . . . . . . . 9
|
| 20 | simpr 110 |
. . . . . . . . 9
| |
| 21 | 0ex 4210 |
. . . . . . . . . . 11
| |
| 22 | 9, 21 | ifex 4576 |
. . . . . . . . . 10
|
| 23 | 22 | a1i 9 |
. . . . . . . . 9
|
| 24 | 17, 19, 20, 23 | fvmptd3 5727 |
. . . . . . . 8
|
| 25 | 16, 24 | eqtrd 2262 |
. . . . . . 7
|
| 26 | 25 | eqeq1d 2238 |
. . . . . 6
|
| 27 | iftrueb01 7404 |
. . . . . 6
| |
| 28 | 26, 27 | bitr2di 197 |
. . . . 5
|
| 29 | 28 | rabbidva 2787 |
. . . 4
|
| 30 | elpwi 3658 |
. . . . . . . . 9
| |
| 31 | dfss1 3408 |
. . . . . . . . 9
| |
| 32 | 30, 31 | sylib 122 |
. . . . . . . 8
|
| 33 | dfin5 3204 |
. . . . . . . 8
| |
| 34 | 32, 33 | eqtr3di 2277 |
. . . . . . 7
|
| 35 | 34 | eqeq1d 2238 |
. . . . . 6
|
| 36 | 35 | adantl 277 |
. . . . 5
|
| 37 | 36 | ad2antlr 489 |
. . . 4
|
| 38 | 29, 37 | mpbird 167 |
. . 3
|
| 39 | simplrl 535 |
. . . . . 6
| |
| 40 | 10 | a1i 9 |
. . . . . . 7
|
| 41 | simpll 527 |
. . . . . . 7
| |
| 42 | 40, 41 | elmapd 6807 |
. . . . . 6
|
| 43 | 39, 42 | mpbid 147 |
. . . . 5
|
| 44 | 43 | feqmptd 5686 |
. . . 4
|
| 45 | simpr 110 |
. . . . . . . . . 10
| |
| 46 | 45 | eleq2d 2299 |
. . . . . . . . 9
|
| 47 | fveqeq2 5635 |
. . . . . . . . . 10
| |
| 48 | 47 | elrab 2959 |
. . . . . . . . 9
|
| 49 | 46, 48 | bitrdi 196 |
. . . . . . . 8
|
| 50 | 49 | baibd 928 |
. . . . . . 7
|
| 51 | 50 | ifbid 3624 |
. . . . . 6
|
| 52 | 43 | ffvelcdmda 5769 |
. . . . . . 7
|
| 53 | pw1if 7406 |
. . . . . . 7
| |
| 54 | 52, 53 | syl 14 |
. . . . . 6
|
| 55 | 51, 54 | eqtr2d 2263 |
. . . . 5
|
| 56 | 55 | mpteq2dva 4173 |
. . . 4
|
| 57 | 44, 56 | eqtrd 2262 |
. . 3
|
| 58 | 38, 57 | impbida 598 |
. 2
|
| 59 | 1, 5, 14, 58 | f1o2d 6209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1o 6560 df-map 6795 |
| This theorem is referenced by: pw1mapen 16321 |
| Copyright terms: Public domain | W3C validator |