| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1map | Unicode version | ||
| Description: Mapping between |
| Ref | Expression |
|---|---|
| pw1map.f |
|
| Ref | Expression |
|---|---|
| pw1map |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1map.f |
. 2
| |
| 2 | ssrab2 3282 |
. . . 4
| |
| 3 | elpw2g 4208 |
. . . 4
| |
| 4 | 2, 3 | mpbiri 168 |
. . 3
|
| 5 | 4 | adantr 276 |
. 2
|
| 6 | fmelpw1o 7378 |
. . . . 5
| |
| 7 | 6 | a1i 9 |
. . . 4
|
| 8 | 7 | fmpttd 5748 |
. . 3
|
| 9 | 1oex 6523 |
. . . . . 6
| |
| 10 | 9 | pwex 4235 |
. . . . 5
|
| 11 | 10 | a1i 9 |
. . . 4
|
| 12 | simpl 109 |
. . . 4
| |
| 13 | 11, 12 | elmapd 6762 |
. . 3
|
| 14 | 8, 13 | mpbird 167 |
. 2
|
| 15 | simplr 528 |
. . . . . . . . 9
| |
| 16 | 15 | fveq1d 5591 |
. . . . . . . 8
|
| 17 | eqid 2206 |
. . . . . . . . 9
| |
| 18 | elequ1 2181 |
. . . . . . . . . 10
| |
| 19 | 18 | ifbid 3597 |
. . . . . . . . 9
|
| 20 | simpr 110 |
. . . . . . . . 9
| |
| 21 | 0ex 4179 |
. . . . . . . . . . 11
| |
| 22 | 9, 21 | ifex 4541 |
. . . . . . . . . 10
|
| 23 | 22 | a1i 9 |
. . . . . . . . 9
|
| 24 | 17, 19, 20, 23 | fvmptd3 5686 |
. . . . . . . 8
|
| 25 | 16, 24 | eqtrd 2239 |
. . . . . . 7
|
| 26 | 25 | eqeq1d 2215 |
. . . . . 6
|
| 27 | iftrueb01 7354 |
. . . . . 6
| |
| 28 | 26, 27 | bitr2di 197 |
. . . . 5
|
| 29 | 28 | rabbidva 2761 |
. . . 4
|
| 30 | elpwi 3630 |
. . . . . . . . 9
| |
| 31 | dfss1 3381 |
. . . . . . . . 9
| |
| 32 | 30, 31 | sylib 122 |
. . . . . . . 8
|
| 33 | dfin5 3177 |
. . . . . . . 8
| |
| 34 | 32, 33 | eqtr3di 2254 |
. . . . . . 7
|
| 35 | 34 | eqeq1d 2215 |
. . . . . 6
|
| 36 | 35 | adantl 277 |
. . . . 5
|
| 37 | 36 | ad2antlr 489 |
. . . 4
|
| 38 | 29, 37 | mpbird 167 |
. . 3
|
| 39 | simplrl 535 |
. . . . . 6
| |
| 40 | 10 | a1i 9 |
. . . . . . 7
|
| 41 | simpll 527 |
. . . . . . 7
| |
| 42 | 40, 41 | elmapd 6762 |
. . . . . 6
|
| 43 | 39, 42 | mpbid 147 |
. . . . 5
|
| 44 | 43 | feqmptd 5645 |
. . . 4
|
| 45 | simpr 110 |
. . . . . . . . . 10
| |
| 46 | 45 | eleq2d 2276 |
. . . . . . . . 9
|
| 47 | fveqeq2 5598 |
. . . . . . . . . 10
| |
| 48 | 47 | elrab 2933 |
. . . . . . . . 9
|
| 49 | 46, 48 | bitrdi 196 |
. . . . . . . 8
|
| 50 | 49 | baibd 925 |
. . . . . . 7
|
| 51 | 50 | ifbid 3597 |
. . . . . 6
|
| 52 | 43 | ffvelcdmda 5728 |
. . . . . . 7
|
| 53 | pw1if 7356 |
. . . . . . 7
| |
| 54 | 52, 53 | syl 14 |
. . . . . 6
|
| 55 | 51, 54 | eqtr2d 2240 |
. . . . 5
|
| 56 | 55 | mpteq2dva 4142 |
. . . 4
|
| 57 | 44, 56 | eqtrd 2239 |
. . 3
|
| 58 | 38, 57 | impbida 596 |
. 2
|
| 59 | 1, 5, 14, 58 | f1o2d 6164 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1o 6515 df-map 6750 |
| This theorem is referenced by: pw1mapen 16074 |
| Copyright terms: Public domain | W3C validator |