ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1m Unicode version

Theorem pw1m 7355
Description: A truth value which is inhabited is equal to true. This is a variation of pwntru 4251 and pwtrufal 16075. (Contributed by Jim Kingdon, 10-Jan-2026.)
Assertion
Ref Expression
pw1m  |-  ( ( A  e.  ~P 1o  /\ 
E. x  x  e.  A )  ->  A  =  1o )
Distinct variable group:    x, A

Proof of Theorem pw1m
StepHypRef Expression
1 elpwi 3630 . . . . . . . 8  |-  ( A  e.  ~P 1o  ->  A 
C_  1o )
2 df1o2 6528 . . . . . . . 8  |-  1o  =  { (/) }
31, 2sseqtrdi 3245 . . . . . . 7  |-  ( A  e.  ~P 1o  ->  A 
C_  { (/) } )
43adantr 276 . . . . . 6  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  A  C_  { (/) } )
51sselda 3197 . . . . . . . . . 10  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  x  e.  1o )
65, 2eleqtrdi 2299 . . . . . . . . 9  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  x  e.  { (/)
} )
7 elsni 3656 . . . . . . . . 9  |-  ( x  e.  { (/) }  ->  x  =  (/) )
86, 7syl 14 . . . . . . . 8  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  x  =  (/) )
9 simpr 110 . . . . . . . 8  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  x  e.  A
)
108, 9eqeltrrd 2284 . . . . . . 7  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  (/)  e.  A )
1110snssd 3784 . . . . . 6  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  { (/) }  C_  A )
124, 11eqssd 3214 . . . . 5  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  A  =  { (/)
} )
1312, 2eqtr4di 2257 . . . 4  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  A  =  1o )
1413ex 115 . . 3  |-  ( A  e.  ~P 1o  ->  ( x  e.  A  ->  A  =  1o )
)
1514exlimdv 1843 . 2  |-  ( A  e.  ~P 1o  ->  ( E. x  x  e.  A  ->  A  =  1o ) )
1615imp 124 1  |-  ( ( A  e.  ~P 1o  /\ 
E. x  x  e.  A )  ->  A  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177    C_ wss 3170   (/)c0 3464   ~Pcpw 3621   {csn 3638   1oc1o 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-suc 4426  df-1o 6515
This theorem is referenced by:  pw1if  7356
  Copyright terms: Public domain W3C validator