ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrfval Unicode version

Theorem ntrfval 12740
Description: The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrfval  |-  ( J  e.  Top  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
Distinct variable groups:    x, J    x, X

Proof of Theorem ntrfval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4  |-  X  = 
U. J
21topopn 12646 . . 3  |-  ( J  e.  Top  ->  X  e.  J )
3 pwexg 4159 . . 3  |-  ( X  e.  J  ->  ~P X  e.  _V )
4 mptexg 5710 . . 3  |-  ( ~P X  e.  _V  ->  ( x  e.  ~P X  |-> 
U. ( J  i^i  ~P x ) )  e. 
_V )
52, 3, 43syl 17 . 2  |-  ( J  e.  Top  ->  (
x  e.  ~P X  |-> 
U. ( J  i^i  ~P x ) )  e. 
_V )
6 unieq 3798 . . . . . 6  |-  ( j  =  J  ->  U. j  =  U. J )
76, 1eqtr4di 2217 . . . . 5  |-  ( j  =  J  ->  U. j  =  X )
87pweqd 3564 . . . 4  |-  ( j  =  J  ->  ~P U. j  =  ~P X
)
9 ineq1 3316 . . . . 5  |-  ( j  =  J  ->  (
j  i^i  ~P x
)  =  ( J  i^i  ~P x ) )
109unieqd 3800 . . . 4  |-  ( j  =  J  ->  U. (
j  i^i  ~P x
)  =  U. ( J  i^i  ~P x ) )
118, 10mpteq12dv 4064 . . 3  |-  ( j  =  J  ->  (
x  e.  ~P U. j  |->  U. ( j  i^i 
~P x ) )  =  ( x  e. 
~P X  |->  U. ( J  i^i  ~P x ) ) )
12 df-ntr 12736 . . 3  |-  int  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  U. ( j  i^i 
~P x ) ) )
1311, 12fvmptg 5562 . 2  |-  ( ( J  e.  Top  /\  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )  e. 
_V )  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
145, 13mpdan 418 1  |-  ( J  e.  Top  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726    i^i cin 3115   ~Pcpw 3559   U.cuni 3789    |-> cmpt 4043   ` cfv 5188   Topctop 12635   intcnt 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12636  df-ntr 12736
This theorem is referenced by:  ntrval  12750
  Copyright terms: Public domain W3C validator