Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pmvalg | Unicode version |
Description: The value of the partial mapping operation. is the set of all partial functions that map from to . (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
pmvalg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3227 | . . 3 | |
2 | xpexg 4718 | . . . . 5 | |
3 | 2 | ancoms 266 | . . . 4 |
4 | pwexg 4159 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | ssexg 4121 | . . 3 | |
7 | 1, 5, 6 | sylancr 411 | . 2 |
8 | elex 2737 | . . 3 | |
9 | elex 2737 | . . 3 | |
10 | xpeq2 4619 | . . . . . . 7 | |
11 | 10 | pweqd 3564 | . . . . . 6 |
12 | rabeq 2718 | . . . . . 6 | |
13 | 11, 12 | syl 14 | . . . . 5 |
14 | xpeq1 4618 | . . . . . . 7 | |
15 | 14 | pweqd 3564 | . . . . . 6 |
16 | rabeq 2718 | . . . . . 6 | |
17 | 15, 16 | syl 14 | . . . . 5 |
18 | df-pm 6617 | . . . . 5 | |
19 | 13, 17, 18 | ovmpog 5976 | . . . 4 |
20 | 19 | 3expia 1195 | . . 3 |
21 | 8, 9, 20 | syl2an 287 | . 2 |
22 | 7, 21 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 crab 2448 cvv 2726 wss 3116 cpw 3559 cxp 4602 wfun 5182 (class class class)co 5842 cpm 6615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pm 6617 |
This theorem is referenced by: elpmg 6630 |
Copyright terms: Public domain | W3C validator |