ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmvalg Unicode version

Theorem pmvalg 6619
Description: The value of the partial mapping operation.  ( A  ^pm  B ) is the set of all partial functions that map from  B to  A. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
pmvalg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem pmvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3225 . . 3  |-  { f  e.  ~P ( B  X.  A )  |  Fun  f }  C_  ~P ( B  X.  A
)
2 xpexg 4715 . . . . 5  |-  ( ( B  e.  D  /\  A  e.  C )  ->  ( B  X.  A
)  e.  _V )
32ancoms 266 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( B  X.  A
)  e.  _V )
4 pwexg 4156 . . . 4  |-  ( ( B  X.  A )  e.  _V  ->  ~P ( B  X.  A
)  e.  _V )
53, 4syl 14 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ~P ( B  X.  A )  e.  _V )
6 ssexg 4118 . . 3  |-  ( ( { f  e.  ~P ( B  X.  A
)  |  Fun  f }  C_  ~P ( B  X.  A )  /\  ~P ( B  X.  A
)  e.  _V )  ->  { f  e.  ~P ( B  X.  A
)  |  Fun  f }  e.  _V )
71, 5, 6sylancr 411 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  e.  ~P ( B  X.  A
)  |  Fun  f }  e.  _V )
8 elex 2735 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
9 elex 2735 . . 3  |-  ( B  e.  D  ->  B  e.  _V )
10 xpeq2 4616 . . . . . . 7  |-  ( x  =  A  ->  (
y  X.  x )  =  ( y  X.  A ) )
1110pweqd 3561 . . . . . 6  |-  ( x  =  A  ->  ~P ( y  X.  x
)  =  ~P (
y  X.  A ) )
12 rabeq 2716 . . . . . 6  |-  ( ~P ( y  X.  x
)  =  ~P (
y  X.  A )  ->  { f  e. 
~P ( y  X.  x )  |  Fun  f }  =  {
f  e.  ~P (
y  X.  A )  |  Fun  f } )
1311, 12syl 14 . . . . 5  |-  ( x  =  A  ->  { f  e.  ~P ( y  X.  x )  |  Fun  f }  =  { f  e.  ~P ( y  X.  A
)  |  Fun  f } )
14 xpeq1 4615 . . . . . . 7  |-  ( y  =  B  ->  (
y  X.  A )  =  ( B  X.  A ) )
1514pweqd 3561 . . . . . 6  |-  ( y  =  B  ->  ~P ( y  X.  A
)  =  ~P ( B  X.  A ) )
16 rabeq 2716 . . . . . 6  |-  ( ~P ( y  X.  A
)  =  ~P ( B  X.  A )  ->  { f  e.  ~P ( y  X.  A
)  |  Fun  f }  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
1715, 16syl 14 . . . . 5  |-  ( y  =  B  ->  { f  e.  ~P ( y  X.  A )  |  Fun  f }  =  { f  e.  ~P ( B  X.  A
)  |  Fun  f } )
18 df-pm 6611 . . . . 5  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
1913, 17, 18ovmpog 5970 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  {
f  e.  ~P ( B  X.  A )  |  Fun  f }  e.  _V )  ->  ( A 
^pm  B )  =  { f  e.  ~P ( B  X.  A
)  |  Fun  f } )
20193expia 1194 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { f  e. 
~P ( B  X.  A )  |  Fun  f }  e.  _V  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } ) )
218, 9, 20syl2an 287 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { f  e. 
~P ( B  X.  A )  |  Fun  f }  e.  _V  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } ) )
227, 21mpd 13 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   {crab 2446   _Vcvv 2724    C_ wss 3114   ~Pcpw 3556    X. cxp 4599   Fun wfun 5179  (class class class)co 5839    ^pm cpm 6609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2726  df-sbc 2950  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-id 4268  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-iota 5150  df-fun 5187  df-fv 5193  df-ov 5842  df-oprab 5843  df-mpo 5844  df-pm 6611
This theorem is referenced by:  elpmg  6624
  Copyright terms: Public domain W3C validator