ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmvalg Unicode version

Theorem pmvalg 6546
Description: The value of the partial mapping operation.  ( A  ^pm  B ) is the set of all partial functions that map from  B to  A. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
pmvalg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem pmvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3177 . . 3  |-  { f  e.  ~P ( B  X.  A )  |  Fun  f }  C_  ~P ( B  X.  A
)
2 xpexg 4648 . . . . 5  |-  ( ( B  e.  D  /\  A  e.  C )  ->  ( B  X.  A
)  e.  _V )
32ancoms 266 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( B  X.  A
)  e.  _V )
4 pwexg 4099 . . . 4  |-  ( ( B  X.  A )  e.  _V  ->  ~P ( B  X.  A
)  e.  _V )
53, 4syl 14 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ~P ( B  X.  A )  e.  _V )
6 ssexg 4062 . . 3  |-  ( ( { f  e.  ~P ( B  X.  A
)  |  Fun  f }  C_  ~P ( B  X.  A )  /\  ~P ( B  X.  A
)  e.  _V )  ->  { f  e.  ~P ( B  X.  A
)  |  Fun  f }  e.  _V )
71, 5, 6sylancr 410 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  e.  ~P ( B  X.  A
)  |  Fun  f }  e.  _V )
8 elex 2692 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
9 elex 2692 . . 3  |-  ( B  e.  D  ->  B  e.  _V )
10 xpeq2 4549 . . . . . . 7  |-  ( x  =  A  ->  (
y  X.  x )  =  ( y  X.  A ) )
1110pweqd 3510 . . . . . 6  |-  ( x  =  A  ->  ~P ( y  X.  x
)  =  ~P (
y  X.  A ) )
12 rabeq 2673 . . . . . 6  |-  ( ~P ( y  X.  x
)  =  ~P (
y  X.  A )  ->  { f  e. 
~P ( y  X.  x )  |  Fun  f }  =  {
f  e.  ~P (
y  X.  A )  |  Fun  f } )
1311, 12syl 14 . . . . 5  |-  ( x  =  A  ->  { f  e.  ~P ( y  X.  x )  |  Fun  f }  =  { f  e.  ~P ( y  X.  A
)  |  Fun  f } )
14 xpeq1 4548 . . . . . . 7  |-  ( y  =  B  ->  (
y  X.  A )  =  ( B  X.  A ) )
1514pweqd 3510 . . . . . 6  |-  ( y  =  B  ->  ~P ( y  X.  A
)  =  ~P ( B  X.  A ) )
16 rabeq 2673 . . . . . 6  |-  ( ~P ( y  X.  A
)  =  ~P ( B  X.  A )  ->  { f  e.  ~P ( y  X.  A
)  |  Fun  f }  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
1715, 16syl 14 . . . . 5  |-  ( y  =  B  ->  { f  e.  ~P ( y  X.  A )  |  Fun  f }  =  { f  e.  ~P ( B  X.  A
)  |  Fun  f } )
18 df-pm 6538 . . . . 5  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
1913, 17, 18ovmpog 5898 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  {
f  e.  ~P ( B  X.  A )  |  Fun  f }  e.  _V )  ->  ( A 
^pm  B )  =  { f  e.  ~P ( B  X.  A
)  |  Fun  f } )
20193expia 1183 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { f  e. 
~P ( B  X.  A )  |  Fun  f }  e.  _V  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } ) )
218, 9, 20syl2an 287 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { f  e. 
~P ( B  X.  A )  |  Fun  f }  e.  _V  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } ) )
227, 21mpd 13 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {crab 2418   _Vcvv 2681    C_ wss 3066   ~Pcpw 3505    X. cxp 4532   Fun wfun 5112  (class class class)co 5767    ^pm cpm 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pm 6538
This theorem is referenced by:  elpmg  6551
  Copyright terms: Public domain W3C validator