Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pmvalg | Unicode version |
Description: The value of the partial mapping operation. is the set of all partial functions that map from to . (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
pmvalg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3225 | . . 3 | |
2 | xpexg 4715 | . . . . 5 | |
3 | 2 | ancoms 266 | . . . 4 |
4 | pwexg 4156 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | ssexg 4118 | . . 3 | |
7 | 1, 5, 6 | sylancr 411 | . 2 |
8 | elex 2735 | . . 3 | |
9 | elex 2735 | . . 3 | |
10 | xpeq2 4616 | . . . . . . 7 | |
11 | 10 | pweqd 3561 | . . . . . 6 |
12 | rabeq 2716 | . . . . . 6 | |
13 | 11, 12 | syl 14 | . . . . 5 |
14 | xpeq1 4615 | . . . . . . 7 | |
15 | 14 | pweqd 3561 | . . . . . 6 |
16 | rabeq 2716 | . . . . . 6 | |
17 | 15, 16 | syl 14 | . . . . 5 |
18 | df-pm 6611 | . . . . 5 | |
19 | 13, 17, 18 | ovmpog 5970 | . . . 4 |
20 | 19 | 3expia 1194 | . . 3 |
21 | 8, 9, 20 | syl2an 287 | . 2 |
22 | 7, 21 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1342 wcel 2135 crab 2446 cvv 2724 wss 3114 cpw 3556 cxp 4599 wfun 5179 (class class class)co 5839 cpm 6609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2726 df-sbc 2950 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-opab 4041 df-id 4268 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-iota 5150 df-fun 5187 df-fv 5193 df-ov 5842 df-oprab 5843 df-mpo 5844 df-pm 6611 |
This theorem is referenced by: elpmg 6624 |
Copyright terms: Public domain | W3C validator |