ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsfval Unicode version

Theorem clsfval 13094
Description: The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1  |-  X  = 
U. J
Assertion
Ref Expression
clsfval  |-  ( J  e.  Top  ->  ( cls `  J )  =  ( x  e.  ~P X  |->  |^| { y  e.  ( Clsd `  J
)  |  x  C_  y } ) )
Distinct variable groups:    x, y, J   
x, X
Allowed substitution hint:    X( y)

Proof of Theorem clsfval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4  |-  X  = 
U. J
21topopn 12999 . . 3  |-  ( J  e.  Top  ->  X  e.  J )
3 pwexg 4175 . . 3  |-  ( X  e.  J  ->  ~P X  e.  _V )
4 mptexg 5733 . . 3  |-  ( ~P X  e.  _V  ->  ( x  e.  ~P X  |-> 
|^| { y  e.  (
Clsd `  J )  |  x  C_  y } )  e.  _V )
52, 3, 43syl 17 . 2  |-  ( J  e.  Top  ->  (
x  e.  ~P X  |-> 
|^| { y  e.  (
Clsd `  J )  |  x  C_  y } )  e.  _V )
6 unieq 3814 . . . . . 6  |-  ( j  =  J  ->  U. j  =  U. J )
76, 1eqtr4di 2226 . . . . 5  |-  ( j  =  J  ->  U. j  =  X )
87pweqd 3577 . . . 4  |-  ( j  =  J  ->  ~P U. j  =  ~P X
)
9 fveq2 5507 . . . . . 6  |-  ( j  =  J  ->  ( Clsd `  j )  =  ( Clsd `  J
) )
10 rabeq 2727 . . . . . 6  |-  ( (
Clsd `  j )  =  ( Clsd `  J
)  ->  { y  e.  ( Clsd `  j
)  |  x  C_  y }  =  {
y  e.  ( Clsd `  J )  |  x 
C_  y } )
119, 10syl 14 . . . . 5  |-  ( j  =  J  ->  { y  e.  ( Clsd `  j
)  |  x  C_  y }  =  {
y  e.  ( Clsd `  J )  |  x 
C_  y } )
1211inteqd 3845 . . . 4  |-  ( j  =  J  ->  |^| { y  e.  ( Clsd `  j
)  |  x  C_  y }  =  |^| { y  e.  ( Clsd `  J )  |  x 
C_  y } )
138, 12mpteq12dv 4080 . . 3  |-  ( j  =  J  ->  (
x  e.  ~P U. j  |->  |^| { y  e.  ( Clsd `  j
)  |  x  C_  y } )  =  ( x  e.  ~P X  |-> 
|^| { y  e.  (
Clsd `  J )  |  x  C_  y } ) )
14 df-cls 13090 . . 3  |-  cls  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  |^| { y  e.  ( Clsd `  j
)  |  x  C_  y } ) )
1513, 14fvmptg 5584 . 2  |-  ( ( J  e.  Top  /\  ( x  e.  ~P X  |->  |^| { y  e.  ( Clsd `  J
)  |  x  C_  y } )  e.  _V )  ->  ( cls `  J
)  =  ( x  e.  ~P X  |->  |^|
{ y  e.  (
Clsd `  J )  |  x  C_  y } ) )
165, 15mpdan 421 1  |-  ( J  e.  Top  ->  ( cls `  J )  =  ( x  e.  ~P X  |->  |^| { y  e.  ( Clsd `  J
)  |  x  C_  y } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   {crab 2457   _Vcvv 2735    C_ wss 3127   ~Pcpw 3572   U.cuni 3805   |^|cint 3840    |-> cmpt 4059   ` cfv 5208   Topctop 12988   Clsdccld 13085   clsccl 13087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-top 12989  df-cls 13090
This theorem is referenced by:  clsval  13104
  Copyright terms: Public domain W3C validator