ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neifval Unicode version

Theorem neifval 14697
Description: Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neifval  |-  ( J  e.  Top  ->  ( nei `  J )  =  ( x  e.  ~P X  |->  { v  e. 
~P X  |  E. g  e.  J  (
x  C_  g  /\  g  C_  v ) } ) )
Distinct variable groups:    v, g, x, J    g, X, v, x

Proof of Theorem neifval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4  |-  X  = 
U. J
21topopn 14565 . . 3  |-  ( J  e.  Top  ->  X  e.  J )
3 pwexg 4235 . . 3  |-  ( X  e.  J  ->  ~P X  e.  _V )
4 mptexg 5827 . . 3  |-  ( ~P X  e.  _V  ->  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } )  e.  _V )
52, 3, 43syl 17 . 2  |-  ( J  e.  Top  ->  (
x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } )  e.  _V )
6 unieq 3868 . . . . . 6  |-  ( j  =  J  ->  U. j  =  U. J )
76, 1eqtr4di 2257 . . . . 5  |-  ( j  =  J  ->  U. j  =  X )
87pweqd 3626 . . . 4  |-  ( j  =  J  ->  ~P U. j  =  ~P X
)
9 rexeq 2704 . . . . 5  |-  ( j  =  J  ->  ( E. g  e.  j 
( x  C_  g  /\  g  C_  v )  <->  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) ) )
108, 9rabeqbidv 2768 . . . 4  |-  ( j  =  J  ->  { v  e.  ~P U. j  |  E. g  e.  j  ( x  C_  g  /\  g  C_  v ) }  =  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } )
118, 10mpteq12dv 4137 . . 3  |-  ( j  =  J  ->  (
x  e.  ~P U. j  |->  { v  e. 
~P U. j  |  E. g  e.  j  (
x  C_  g  /\  g  C_  v ) } )  =  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) )
12 df-nei 14696 . . 3  |-  nei  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { v  e. 
~P U. j  |  E. g  e.  j  (
x  C_  g  /\  g  C_  v ) } ) )
1311, 12fvmptg 5673 . 2  |-  ( ( J  e.  Top  /\  ( x  e.  ~P X  |->  { v  e. 
~P X  |  E. g  e.  J  (
x  C_  g  /\  g  C_  v ) } )  e.  _V )  ->  ( nei `  J
)  =  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) )
145, 13mpdan 421 1  |-  ( J  e.  Top  ->  ( nei `  J )  =  ( x  e.  ~P X  |->  { v  e. 
~P X  |  E. g  e.  J  (
x  C_  g  /\  g  C_  v ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   E.wrex 2486   {crab 2489   _Vcvv 2773    C_ wss 3170   ~Pcpw 3621   U.cuni 3859    |-> cmpt 4116   ` cfv 5285   Topctop 14554   neicnei 14695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-top 14555  df-nei 14696
This theorem is referenced by:  neif  14698  neival  14700
  Copyright terms: Public domain W3C validator