ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsel Unicode version

Theorem qsel 6436
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
qsel  |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R
)

Proof of Theorem qsel
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2100 . . 3  |-  ( A /. R )  =  ( A /. R
)
2 eleq2 2163 . . . 4  |-  ( [ x ] R  =  B  ->  ( C  e.  [ x ] R  <->  C  e.  B ) )
3 eqeq1 2106 . . . 4  |-  ( [ x ] R  =  B  ->  ( [
x ] R  =  [ C ] R  <->  B  =  [ C ] R ) )
42, 3imbi12d 233 . . 3  |-  ( [ x ] R  =  B  ->  ( ( C  e.  [ x ] R  ->  [ x ] R  =  [ C ] R )  <->  ( C  e.  B  ->  B  =  [ C ] R
) ) )
5 vex 2644 . . . . . 6  |-  x  e. 
_V
6 elecg 6397 . . . . . 6  |-  ( ( C  e.  [ x ] R  /\  x  e.  _V )  ->  ( C  e.  [ x ] R  <->  x R C ) )
75, 6mpan2 419 . . . . 5  |-  ( C  e.  [ x ] R  ->  ( C  e. 
[ x ] R  <->  x R C ) )
87ibi 175 . . . 4  |-  ( C  e.  [ x ] R  ->  x R C )
9 simpll 499 . . . . . 6  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  R  Er  X )
10 simpr 109 . . . . . 6  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  x R C )
119, 10erthi 6405 . . . . 5  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  [ x ] R  =  [ C ] R )
1211ex 114 . . . 4  |-  ( ( R  Er  X  /\  x  e.  A )  ->  ( x R C  ->  [ x ] R  =  [ C ] R ) )
138, 12syl5 32 . . 3  |-  ( ( R  Er  X  /\  x  e.  A )  ->  ( C  e.  [
x ] R  ->  [ x ] R  =  [ C ] R
) )
141, 4, 13ectocld 6425 . 2  |-  ( ( R  Er  X  /\  B  e.  ( A /. R ) )  -> 
( C  e.  B  ->  B  =  [ C ] R ) )
15143impia 1146 1  |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448   _Vcvv 2641   class class class wbr 3875    Er wer 6356   [cec 6357   /.cqs 6358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-er 6359  df-ec 6361  df-qs 6365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator