ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsel Unicode version

Theorem qsel 6569
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
qsel  |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R
)

Proof of Theorem qsel
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2164 . . 3  |-  ( A /. R )  =  ( A /. R
)
2 eleq2 2228 . . . 4  |-  ( [ x ] R  =  B  ->  ( C  e.  [ x ] R  <->  C  e.  B ) )
3 eqeq1 2171 . . . 4  |-  ( [ x ] R  =  B  ->  ( [
x ] R  =  [ C ] R  <->  B  =  [ C ] R ) )
42, 3imbi12d 233 . . 3  |-  ( [ x ] R  =  B  ->  ( ( C  e.  [ x ] R  ->  [ x ] R  =  [ C ] R )  <->  ( C  e.  B  ->  B  =  [ C ] R
) ) )
5 vex 2724 . . . . . 6  |-  x  e. 
_V
6 elecg 6530 . . . . . 6  |-  ( ( C  e.  [ x ] R  /\  x  e.  _V )  ->  ( C  e.  [ x ] R  <->  x R C ) )
75, 6mpan2 422 . . . . 5  |-  ( C  e.  [ x ] R  ->  ( C  e. 
[ x ] R  <->  x R C ) )
87ibi 175 . . . 4  |-  ( C  e.  [ x ] R  ->  x R C )
9 simpll 519 . . . . . 6  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  R  Er  X )
10 simpr 109 . . . . . 6  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  x R C )
119, 10erthi 6538 . . . . 5  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  [ x ] R  =  [ C ] R )
1211ex 114 . . . 4  |-  ( ( R  Er  X  /\  x  e.  A )  ->  ( x R C  ->  [ x ] R  =  [ C ] R ) )
138, 12syl5 32 . . 3  |-  ( ( R  Er  X  /\  x  e.  A )  ->  ( C  e.  [
x ] R  ->  [ x ] R  =  [ C ] R
) )
141, 4, 13ectocld 6558 . 2  |-  ( ( R  Er  X  /\  B  e.  ( A /. R ) )  -> 
( C  e.  B  ->  B  =  [ C ] R ) )
15143impia 1189 1  |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135   _Vcvv 2721   class class class wbr 3976    Er wer 6489   [cec 6490   /.cqs 6491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-br 3977  df-opab 4038  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-er 6492  df-ec 6494  df-qs 6498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator