Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qsel | Unicode version |
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
qsel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 | |
2 | eleq2 2230 | . . . 4 | |
3 | eqeq1 2172 | . . . 4 | |
4 | 2, 3 | imbi12d 233 | . . 3 |
5 | vex 2729 | . . . . . 6 | |
6 | elecg 6539 | . . . . . 6 | |
7 | 5, 6 | mpan2 422 | . . . . 5 |
8 | 7 | ibi 175 | . . . 4 |
9 | simpll 519 | . . . . . 6 | |
10 | simpr 109 | . . . . . 6 | |
11 | 9, 10 | erthi 6547 | . . . . 5 |
12 | 11 | ex 114 | . . . 4 |
13 | 8, 12 | syl5 32 | . . 3 |
14 | 1, 4, 13 | ectocld 6567 | . 2 |
15 | 14 | 3impia 1190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cvv 2726 class class class wbr 3982 wer 6498 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-er 6501 df-ec 6503 df-qs 6507 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |