| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecinxp | Unicode version | ||
| Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| ecinxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . . . 8
| |
| 2 | 1 | snssd 3784 |
. . . . . . 7
|
| 3 | df-ss 3183 |
. . . . . . 7
| |
| 4 | 2, 3 | sylib 122 |
. . . . . 6
|
| 5 | 4 | imaeq2d 5031 |
. . . . 5
|
| 6 | 5 | ineq1d 3377 |
. . . 4
|
| 7 | imass2 5067 |
. . . . . . 7
| |
| 8 | 2, 7 | syl 14 |
. . . . . 6
|
| 9 | simpl 109 |
. . . . . 6
| |
| 10 | 8, 9 | sstrd 3207 |
. . . . 5
|
| 11 | df-ss 3183 |
. . . . 5
| |
| 12 | 10, 11 | sylib 122 |
. . . 4
|
| 13 | 6, 12 | eqtr2d 2240 |
. . 3
|
| 14 | imainrect 5137 |
. . 3
| |
| 15 | 13, 14 | eqtr4di 2257 |
. 2
|
| 16 | df-ec 6635 |
. 2
| |
| 17 | df-ec 6635 |
. 2
| |
| 18 | 15, 16, 17 | 3eqtr4g 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-ec 6635 |
| This theorem is referenced by: qsinxp 6711 nqnq0pi 7571 qusin 13233 |
| Copyright terms: Public domain | W3C validator |