ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecinxp Unicode version

Theorem ecinxp 6576
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
Assertion
Ref Expression
ecinxp  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )

Proof of Theorem ecinxp
StepHypRef Expression
1 simpr 109 . . . . . . . 8  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  B  e.  A )
21snssd 3718 . . . . . . 7  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  { B }  C_  A )
3 df-ss 3129 . . . . . . 7  |-  ( { B }  C_  A  <->  ( { B }  i^i  A )  =  { B } )
42, 3sylib 121 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( { B }  i^i  A )  =  { B } )
54imaeq2d 4946 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " ( { B }  i^i  A
) )  =  ( R " { B } ) )
65ineq1d 3322 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( ( R "
( { B }  i^i  A ) )  i^i 
A )  =  ( ( R " { B } )  i^i  A
) )
7 imass2 4980 . . . . . . 7  |-  ( { B }  C_  A  ->  ( R " { B } )  C_  ( R " A ) )
82, 7syl 14 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  C_  ( R " A ) )
9 simpl 108 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " A
)  C_  A )
108, 9sstrd 3152 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  C_  A
)
11 df-ss 3129 . . . . 5  |-  ( ( R " { B } )  C_  A  <->  ( ( R " { B } )  i^i  A
)  =  ( R
" { B }
) )
1210, 11sylib 121 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( ( R " { B } )  i^i 
A )  =  ( R " { B } ) )
136, 12eqtr2d 2199 . . 3  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  =  ( ( R " ( { B }  i^i  A
) )  i^i  A
) )
14 imainrect 5049 . . 3  |-  ( ( R  i^i  ( A  X.  A ) )
" { B }
)  =  ( ( R " ( { B }  i^i  A
) )  i^i  A
)
1513, 14eqtr4di 2217 . 2  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  =  ( ( R  i^i  ( A  X.  A ) )
" { B }
) )
16 df-ec 6503 . 2  |-  [ B ] R  =  ( R " { B }
)
17 df-ec 6503 . 2  |-  [ B ] ( R  i^i  ( A  X.  A
) )  =  ( ( R  i^i  ( A  X.  A ) )
" { B }
)
1815, 16, 173eqtr4g 2224 1  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    i^i cin 3115    C_ wss 3116   {csn 3576    X. cxp 4602   "cima 4607   [cec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503
This theorem is referenced by:  qsinxp  6577  nqnq0pi  7379
  Copyright terms: Public domain W3C validator