ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecinxp Unicode version

Theorem ecinxp 6512
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
Assertion
Ref Expression
ecinxp  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )

Proof of Theorem ecinxp
StepHypRef Expression
1 simpr 109 . . . . . . . 8  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  B  e.  A )
21snssd 3673 . . . . . . 7  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  { B }  C_  A )
3 df-ss 3089 . . . . . . 7  |-  ( { B }  C_  A  <->  ( { B }  i^i  A )  =  { B } )
42, 3sylib 121 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( { B }  i^i  A )  =  { B } )
54imaeq2d 4889 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " ( { B }  i^i  A
) )  =  ( R " { B } ) )
65ineq1d 3281 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( ( R "
( { B }  i^i  A ) )  i^i 
A )  =  ( ( R " { B } )  i^i  A
) )
7 imass2 4923 . . . . . . 7  |-  ( { B }  C_  A  ->  ( R " { B } )  C_  ( R " A ) )
82, 7syl 14 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  C_  ( R " A ) )
9 simpl 108 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " A
)  C_  A )
108, 9sstrd 3112 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  C_  A
)
11 df-ss 3089 . . . . 5  |-  ( ( R " { B } )  C_  A  <->  ( ( R " { B } )  i^i  A
)  =  ( R
" { B }
) )
1210, 11sylib 121 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( ( R " { B } )  i^i 
A )  =  ( R " { B } ) )
136, 12eqtr2d 2174 . . 3  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  =  ( ( R " ( { B }  i^i  A
) )  i^i  A
) )
14 imainrect 4992 . . 3  |-  ( ( R  i^i  ( A  X.  A ) )
" { B }
)  =  ( ( R " ( { B }  i^i  A
) )  i^i  A
)
1513, 14eqtr4di 2191 . 2  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  =  ( ( R  i^i  ( A  X.  A ) )
" { B }
) )
16 df-ec 6439 . 2  |-  [ B ] R  =  ( R " { B }
)
17 df-ec 6439 . 2  |-  [ B ] ( R  i^i  ( A  X.  A
) )  =  ( ( R  i^i  ( A  X.  A ) )
" { B }
)
1815, 16, 173eqtr4g 2198 1  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    i^i cin 3075    C_ wss 3076   {csn 3532    X. cxp 4545   "cima 4550   [cec 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-ec 6439
This theorem is referenced by:  qsinxp  6513  nqnq0pi  7270
  Copyright terms: Public domain W3C validator