ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecinxp Unicode version

Theorem ecinxp 6664
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
Assertion
Ref Expression
ecinxp  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )

Proof of Theorem ecinxp
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  B  e.  A )
21snssd 3763 . . . . . . 7  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  { B }  C_  A )
3 df-ss 3166 . . . . . . 7  |-  ( { B }  C_  A  <->  ( { B }  i^i  A )  =  { B } )
42, 3sylib 122 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( { B }  i^i  A )  =  { B } )
54imaeq2d 5005 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " ( { B }  i^i  A
) )  =  ( R " { B } ) )
65ineq1d 3359 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( ( R "
( { B }  i^i  A ) )  i^i 
A )  =  ( ( R " { B } )  i^i  A
) )
7 imass2 5041 . . . . . . 7  |-  ( { B }  C_  A  ->  ( R " { B } )  C_  ( R " A ) )
82, 7syl 14 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  C_  ( R " A ) )
9 simpl 109 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " A
)  C_  A )
108, 9sstrd 3189 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  C_  A
)
11 df-ss 3166 . . . . 5  |-  ( ( R " { B } )  C_  A  <->  ( ( R " { B } )  i^i  A
)  =  ( R
" { B }
) )
1210, 11sylib 122 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( ( R " { B } )  i^i 
A )  =  ( R " { B } ) )
136, 12eqtr2d 2227 . . 3  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  =  ( ( R " ( { B }  i^i  A
) )  i^i  A
) )
14 imainrect 5111 . . 3  |-  ( ( R  i^i  ( A  X.  A ) )
" { B }
)  =  ( ( R " ( { B }  i^i  A
) )  i^i  A
)
1513, 14eqtr4di 2244 . 2  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  =  ( ( R  i^i  ( A  X.  A ) )
" { B }
) )
16 df-ec 6589 . 2  |-  [ B ] R  =  ( R " { B }
)
17 df-ec 6589 . 2  |-  [ B ] ( R  i^i  ( A  X.  A
) )  =  ( ( R  i^i  ( A  X.  A ) )
" { B }
)
1815, 16, 173eqtr4g 2251 1  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    i^i cin 3152    C_ wss 3153   {csn 3618    X. cxp 4657   "cima 4662   [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-ec 6589
This theorem is referenced by:  qsinxp  6665  nqnq0pi  7498  qusin  12909
  Copyright terms: Public domain W3C validator