ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecinxp Unicode version

Theorem ecinxp 6755
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
Assertion
Ref Expression
ecinxp  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )

Proof of Theorem ecinxp
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  B  e.  A )
21snssd 3812 . . . . . . 7  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  { B }  C_  A )
3 df-ss 3210 . . . . . . 7  |-  ( { B }  C_  A  <->  ( { B }  i^i  A )  =  { B } )
42, 3sylib 122 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( { B }  i^i  A )  =  { B } )
54imaeq2d 5067 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " ( { B }  i^i  A
) )  =  ( R " { B } ) )
65ineq1d 3404 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( ( R "
( { B }  i^i  A ) )  i^i 
A )  =  ( ( R " { B } )  i^i  A
) )
7 imass2 5103 . . . . . . 7  |-  ( { B }  C_  A  ->  ( R " { B } )  C_  ( R " A ) )
82, 7syl 14 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  C_  ( R " A ) )
9 simpl 109 . . . . . 6  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " A
)  C_  A )
108, 9sstrd 3234 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  C_  A
)
11 df-ss 3210 . . . . 5  |-  ( ( R " { B } )  C_  A  <->  ( ( R " { B } )  i^i  A
)  =  ( R
" { B }
) )
1210, 11sylib 122 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( ( R " { B } )  i^i 
A )  =  ( R " { B } ) )
136, 12eqtr2d 2263 . . 3  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  =  ( ( R " ( { B }  i^i  A
) )  i^i  A
) )
14 imainrect 5173 . . 3  |-  ( ( R  i^i  ( A  X.  A ) )
" { B }
)  =  ( ( R " ( { B }  i^i  A
) )  i^i  A
)
1513, 14eqtr4di 2280 . 2  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  ( R " { B } )  =  ( ( R  i^i  ( A  X.  A ) )
" { B }
) )
16 df-ec 6680 . 2  |-  [ B ] R  =  ( R " { B }
)
17 df-ec 6680 . 2  |-  [ B ] ( R  i^i  ( A  X.  A
) )  =  ( ( R  i^i  ( A  X.  A ) )
" { B }
)
1815, 16, 173eqtr4g 2287 1  |-  ( ( ( R " A
)  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    i^i cin 3196    C_ wss 3197   {csn 3666    X. cxp 4716   "cima 4721   [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-ec 6680
This theorem is referenced by:  qsinxp  6756  nqnq0pi  7621  qusin  13354
  Copyright terms: Public domain W3C validator