ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmidsssn0 Unicode version

Theorem mgmidsssn0 12808
Description: Property of the set of identities of  G. Either  G has no identities, and  O  =  (/), or it has one and this identity is unique and identified by the  0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
mgmidsssn0.b  |-  B  =  ( Base `  G
)
mgmidsssn0.z  |-  .0.  =  ( 0g `  G )
mgmidsssn0.p  |-  .+  =  ( +g  `  G )
mgmidsssn0.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
Assertion
Ref Expression
mgmidsssn0  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x, V    x,  .0. , y
Allowed substitution hints:    O( x, y)    V( y)

Proof of Theorem mgmidsssn0
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mgmidsssn0.o . 2  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
2 simpr 110 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
3 mgmidsssn0.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
4 mgmidsssn0.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
5 mgmidsssn0.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
6 oveq1 5884 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
z  .+  y )  =  ( x  .+  y ) )
76eqeq1d 2186 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( z  .+  y
)  =  y  <->  ( x  .+  y )  =  y ) )
87ovanraleqv 5901 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y )  <->  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
98rspcev 2843 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) )  ->  E. z  e.  B  A. y  e.  B  ( (
z  .+  y )  =  y  /\  (
y  .+  z )  =  y ) )
109adantl 277 . . . . . . . . 9  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  E. z  e.  B  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) )
113, 4, 5, 10ismgmid 12801 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( ( x  e.  B  /\  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) )  <-> 
.0.  =  x ) )
122, 11mpbid 147 . . . . . . 7  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  .0.  =  x )
1312eqcomd 2183 . . . . . 6  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  =  .0.  )
14 velsn 3611 . . . . . 6  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
1513, 14sylibr 134 . . . . 5  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  e.  {  .0.  } )
1615expr 375 . . . 4  |-  ( ( G  e.  V  /\  x  e.  B )  ->  ( A. y  e.  B  ( ( x 
.+  y )  =  y  /\  ( y 
.+  x )  =  y )  ->  x  e.  {  .0.  } ) )
1716ralrimiva 2550 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  ( A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y )  ->  x  e.  {  .0.  } ) )
18 rabss 3234 . . 3  |-  ( { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  C_  {  .0.  }  <->  A. x  e.  B  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  ->  x  e.  {  .0.  } ) )
1917, 18sylibr 134 . 2  |-  ( G  e.  V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  {  .0.  } )
201, 19eqsstrid 3203 1  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3131   {csn 3594   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   0gc0g 12710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-0g 12712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator