ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmidsssn0 Unicode version

Theorem mgmidsssn0 13216
Description: Property of the set of identities of  G. Either  G has no identities, and  O  =  (/), or it has one and this identity is unique and identified by the  0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
mgmidsssn0.b  |-  B  =  ( Base `  G
)
mgmidsssn0.z  |-  .0.  =  ( 0g `  G )
mgmidsssn0.p  |-  .+  =  ( +g  `  G )
mgmidsssn0.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
Assertion
Ref Expression
mgmidsssn0  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x, V    x,  .0. , y
Allowed substitution hints:    O( x, y)    V( y)

Proof of Theorem mgmidsssn0
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mgmidsssn0.o . 2  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
2 simpr 110 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
3 mgmidsssn0.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
4 mgmidsssn0.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
5 mgmidsssn0.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
6 oveq1 5951 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
z  .+  y )  =  ( x  .+  y ) )
76eqeq1d 2214 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( z  .+  y
)  =  y  <->  ( x  .+  y )  =  y ) )
87ovanraleqv 5968 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y )  <->  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
98rspcev 2877 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) )  ->  E. z  e.  B  A. y  e.  B  ( (
z  .+  y )  =  y  /\  (
y  .+  z )  =  y ) )
109adantl 277 . . . . . . . . 9  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  E. z  e.  B  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) )
113, 4, 5, 10ismgmid 13209 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( ( x  e.  B  /\  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) )  <-> 
.0.  =  x ) )
122, 11mpbid 147 . . . . . . 7  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  .0.  =  x )
1312eqcomd 2211 . . . . . 6  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  =  .0.  )
14 velsn 3650 . . . . . 6  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
1513, 14sylibr 134 . . . . 5  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  e.  {  .0.  } )
1615expr 375 . . . 4  |-  ( ( G  e.  V  /\  x  e.  B )  ->  ( A. y  e.  B  ( ( x 
.+  y )  =  y  /\  ( y 
.+  x )  =  y )  ->  x  e.  {  .0.  } ) )
1716ralrimiva 2579 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  ( A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y )  ->  x  e.  {  .0.  } ) )
18 rabss 3270 . . 3  |-  ( { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  C_  {  .0.  }  <->  A. x  e.  B  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  ->  x  e.  {  .0.  } ) )
1917, 18sylibr 134 . 2  |-  ( G  e.  V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  {  .0.  } )
201, 19eqsstrid 3239 1  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488    C_ wss 3166   {csn 3633   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-0g 13090
This theorem is referenced by:  gsumress  13227  gsumvallem2  13325
  Copyright terms: Public domain W3C validator