ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmidsssn0 Unicode version

Theorem mgmidsssn0 12615
Description: Property of the set of identities of  G. Either  G has no identities, and  O  =  (/), or it has one and this identity is unique and identified by the  0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
mgmidsssn0.b  |-  B  =  ( Base `  G
)
mgmidsssn0.z  |-  .0.  =  ( 0g `  G )
mgmidsssn0.p  |-  .+  =  ( +g  `  G )
mgmidsssn0.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
Assertion
Ref Expression
mgmidsssn0  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x, V    x,  .0. , y
Allowed substitution hints:    O( x, y)    V( y)

Proof of Theorem mgmidsssn0
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mgmidsssn0.o . 2  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
2 simpr 109 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
3 mgmidsssn0.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
4 mgmidsssn0.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
5 mgmidsssn0.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
6 oveq1 5849 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
z  .+  y )  =  ( x  .+  y ) )
76eqeq1d 2174 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( z  .+  y
)  =  y  <->  ( x  .+  y )  =  y ) )
87ovanraleqv 5866 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y )  <->  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
98rspcev 2830 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) )  ->  E. z  e.  B  A. y  e.  B  ( (
z  .+  y )  =  y  /\  (
y  .+  z )  =  y ) )
109adantl 275 . . . . . . . . 9  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  E. z  e.  B  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) )
113, 4, 5, 10ismgmid 12608 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( ( x  e.  B  /\  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) )  <-> 
.0.  =  x ) )
122, 11mpbid 146 . . . . . . 7  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  .0.  =  x )
1312eqcomd 2171 . . . . . 6  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  =  .0.  )
14 velsn 3593 . . . . . 6  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
1513, 14sylibr 133 . . . . 5  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  e.  {  .0.  } )
1615expr 373 . . . 4  |-  ( ( G  e.  V  /\  x  e.  B )  ->  ( A. y  e.  B  ( ( x 
.+  y )  =  y  /\  ( y 
.+  x )  =  y )  ->  x  e.  {  .0.  } ) )
1716ralrimiva 2539 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  ( A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y )  ->  x  e.  {  .0.  } ) )
18 rabss 3219 . . 3  |-  ( { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  C_  {  .0.  }  <->  A. x  e.  B  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  ->  x  e.  {  .0.  } ) )
1917, 18sylibr 133 . 2  |-  ( G  e.  V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  {  .0.  } )
201, 19eqsstrid 3188 1  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   {csn 3576   ` cfv 5188  (class class class)co 5842   Basecbs 12394   +g cplusg 12457   0gc0g 12573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-riota 5798  df-ov 5845  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400  df-0g 12575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator