ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabss GIF version

Theorem rabss 3274
Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
rabss ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rabss
StepHypRef Expression
1 df-rab 2494 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq1i 3223 . 2 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵)
3 abss 3266 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵))
4 impexp 263 . . . 4 (((𝑥𝐴𝜑) → 𝑥𝐵) ↔ (𝑥𝐴 → (𝜑𝑥𝐵)))
54albii 1494 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
6 df-ral 2490 . . 3 (∀𝑥𝐴 (𝜑𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
75, 6bitr4i 187 . 2 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
82, 3, 73bitri 206 1 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wcel 2177  {cab 2192  wral 2485  {crab 2489  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-in 3176  df-ss 3183
This theorem is referenced by:  rabssdv  3277  dvdsssfz1  12238  phibndlem  12613  dfphi2  12617  mgmidsssn0  13291  istopon  14560  blsscls2  15040
  Copyright terms: Public domain W3C validator