| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabss | GIF version | ||
| Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| rabss | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2484 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 1 | sseq1i 3209 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐵) |
| 3 | abss 3252 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵)) | |
| 4 | impexp 263 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) | |
| 5 | 4 | albii 1484 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) |
| 6 | df-ral 2480 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) | |
| 7 | 5, 6 | bitr4i 187 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
| 8 | 2, 3, 7 | 3bitri 206 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∈ wcel 2167 {cab 2182 ∀wral 2475 {crab 2479 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-in 3163 df-ss 3170 |
| This theorem is referenced by: rabssdv 3263 dvdsssfz1 12017 phibndlem 12384 dfphi2 12388 mgmidsssn0 13027 istopon 14249 blsscls2 14729 |
| Copyright terms: Public domain | W3C validator |