ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omv Unicode version

Theorem omv 6601
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
omv  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem omv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elon 4483 . . 3  |-  (/)  e.  On
2 omfnex 6595 . . . 4  |-  ( A  e.  On  ->  (
x  e.  _V  |->  ( x  +o  A ) )  Fn  _V )
3 rdgexggg 6523 . . . 4  |-  ( ( ( x  e.  _V  |->  ( x  +o  A
) )  Fn  _V  /\  (/)  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B )  e.  _V )
42, 3syl3an1 1304 . . 3  |-  ( ( A  e.  On  /\  (/) 
e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B )  e.  _V )
51, 4mp3an2 1359 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  B )  e.  _V )
6 oveq2 6009 . . . . . 6  |-  ( y  =  A  ->  (
x  +o  y )  =  ( x  +o  A ) )
76mpteq2dv 4175 . . . . 5  |-  ( y  =  A  ->  (
x  e.  _V  |->  ( x  +o  y ) )  =  ( x  e.  _V  |->  ( x  +o  A ) ) )
8 rdgeq1 6517 . . . . 5  |-  ( ( x  e.  _V  |->  ( x  +o  y ) )  =  ( x  e.  _V  |->  ( x  +o  A ) )  ->  rec ( ( x  e.  _V  |->  ( x  +o  y ) ) ,  (/) )  =  rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) )
97, 8syl 14 . . . 4  |-  ( y  =  A  ->  rec ( ( x  e. 
_V  |->  ( x  +o  y ) ) ,  (/) )  =  rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) )
109fveq1d 5629 . . 3  |-  ( y  =  A  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  y ) ) ,  (/) ) `  z )  =  ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) ) `  z )
)
11 fveq2 5627 . . 3  |-  ( z  =  B  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  z )  =  ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) ) `  B )
)
12 df-omul 6567 . . 3  |-  .o  =  ( y  e.  On ,  z  e.  On  |->  ( rec ( ( x  e.  _V  |->  ( x  +o  y ) ) ,  (/) ) `  z
) )
1310, 11, 12ovmpog 6139 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B )  e.  _V )  -> 
( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
145, 13mpd3an3 1372 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   (/)c0 3491    |-> cmpt 4145   Oncon0 4454    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   reccrdg 6515    +o coa 6559    .o comu 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-oadd 6566  df-omul 6567
This theorem is referenced by:  om0  6604  omcl  6607  omv2  6611
  Copyright terms: Public domain W3C validator