ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omv Unicode version

Theorem omv 6564
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
omv  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem omv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elon 4457 . . 3  |-  (/)  e.  On
2 omfnex 6558 . . . 4  |-  ( A  e.  On  ->  (
x  e.  _V  |->  ( x  +o  A ) )  Fn  _V )
3 rdgexggg 6486 . . . 4  |-  ( ( ( x  e.  _V  |->  ( x  +o  A
) )  Fn  _V  /\  (/)  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B )  e.  _V )
42, 3syl3an1 1283 . . 3  |-  ( ( A  e.  On  /\  (/) 
e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B )  e.  _V )
51, 4mp3an2 1338 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  B )  e.  _V )
6 oveq2 5975 . . . . . 6  |-  ( y  =  A  ->  (
x  +o  y )  =  ( x  +o  A ) )
76mpteq2dv 4151 . . . . 5  |-  ( y  =  A  ->  (
x  e.  _V  |->  ( x  +o  y ) )  =  ( x  e.  _V  |->  ( x  +o  A ) ) )
8 rdgeq1 6480 . . . . 5  |-  ( ( x  e.  _V  |->  ( x  +o  y ) )  =  ( x  e.  _V  |->  ( x  +o  A ) )  ->  rec ( ( x  e.  _V  |->  ( x  +o  y ) ) ,  (/) )  =  rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) )
97, 8syl 14 . . . 4  |-  ( y  =  A  ->  rec ( ( x  e. 
_V  |->  ( x  +o  y ) ) ,  (/) )  =  rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) )
109fveq1d 5601 . . 3  |-  ( y  =  A  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  y ) ) ,  (/) ) `  z )  =  ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) ) `  z )
)
11 fveq2 5599 . . 3  |-  ( z  =  B  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  z )  =  ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) ) `  B )
)
12 df-omul 6530 . . 3  |-  .o  =  ( y  e.  On ,  z  e.  On  |->  ( rec ( ( x  e.  _V  |->  ( x  +o  y ) ) ,  (/) ) `  z
) )
1310, 11, 12ovmpog 6103 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B )  e.  _V )  -> 
( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
145, 13mpd3an3 1351 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   (/)c0 3468    |-> cmpt 4121   Oncon0 4428    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   reccrdg 6478    +o coa 6522    .o comu 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-oadd 6529  df-omul 6530
This theorem is referenced by:  om0  6567  omcl  6570  omv2  6574
  Copyright terms: Public domain W3C validator