Step | Hyp | Ref
| Expression |
1 | | eqid 2165 |
. . 3
⊢ {𝑤 ∈ {∅, {∅}}
∣ (𝑤 = {∅} ∨
(𝑤 = ∅ ∧ 𝜑))} = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} |
2 | 1 | regexmidlemm 4509 |
. 2
⊢
∃𝑦 𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} |
3 | | pp0ex 4168 |
. . . 4
⊢ {∅,
{∅}} ∈ V |
4 | 3 | rabex 4126 |
. . 3
⊢ {𝑤 ∈ {∅, {∅}}
∣ (𝑤 = {∅} ∨
(𝑤 = ∅ ∧ 𝜑))} ∈ V |
5 | | eleq2 2230 |
. . . . 5
⊢ (𝑥 = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))})) |
6 | 5 | exbidv 1813 |
. . . 4
⊢ (𝑥 = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → (∃𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑦 𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))})) |
7 | | eleq2 2230 |
. . . . . . . . 9
⊢ (𝑥 = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))})) |
8 | 7 | notbid 657 |
. . . . . . . 8
⊢ (𝑥 = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → (¬ 𝑧 ∈ 𝑥 ↔ ¬ 𝑧 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))})) |
9 | 8 | imbi2d 229 |
. . . . . . 7
⊢ (𝑥 = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → ((𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))}))) |
10 | 9 | albidv 1812 |
. . . . . 6
⊢ (𝑥 = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → (∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))}))) |
11 | 5, 10 | anbi12d 465 |
. . . . 5
⊢ (𝑥 = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → ((𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) ↔ (𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))})))) |
12 | 11 | exbidv 1813 |
. . . 4
⊢ (𝑥 = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → (∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) ↔ ∃𝑦(𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))})))) |
13 | 6, 12 | imbi12d 233 |
. . 3
⊢ (𝑥 = {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → ((∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) ↔ (∃𝑦 𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → ∃𝑦(𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))}))))) |
14 | | regexmid.1 |
. . 3
⊢
(∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
15 | 4, 13, 14 | vtocl 2780 |
. 2
⊢
(∃𝑦 𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} → ∃𝑦(𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))}))) |
16 | 1 | regexmidlem1 4510 |
. 2
⊢
(∃𝑦(𝑦 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))} ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑤 ∈ {∅, {∅}} ∣ (𝑤 = {∅} ∨ (𝑤 = ∅ ∧ 𝜑))})) → (𝜑 ∨ ¬ 𝜑)) |
17 | 2, 15, 16 | mp2b 8 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |