ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnregexmid Unicode version

Theorem nnregexmid 4669
Description: If inhabited sets of natural numbers always have minimal elements, excluded middle follows. The argument is essentially the same as regexmid 4583 and the larger lesson is that although natural numbers may behave "non-constructively" even in a constructive set theory (for example see nndceq 6585 or nntri3or 6579), sets of natural numbers are a different animal. (Contributed by Jim Kingdon, 6-Sep-2019.)
Hypothesis
Ref Expression
nnregexmid.1  |-  ( ( x  C_  om  /\  E. y  y  e.  x
)  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )
Assertion
Ref Expression
nnregexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y, z

Proof of Theorem nnregexmid
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3278 . . . 4  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  C_  {
(/) ,  { (/) } }
2 peano1 4642 . . . . 5  |-  (/)  e.  om
3 suc0 4458 . . . . . 6  |-  suc  (/)  =  { (/)
}
4 peano2 4643 . . . . . . 7  |-  ( (/)  e.  om  ->  suc  (/)  e.  om )
52, 4ax-mp 5 . . . . . 6  |-  suc  (/)  e.  om
63, 5eqeltrri 2279 . . . . 5  |-  { (/) }  e.  om
7 prssi 3791 . . . . 5  |-  ( (
(/)  e.  om  /\  { (/)
}  e.  om )  ->  { (/) ,  { (/) } }  C_  om )
82, 6, 7mp2an 426 . . . 4  |-  { (/) ,  { (/) } }  C_  om
91, 8sstri 3202 . . 3  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  C_  om
10 eqid 2205 . . . 4  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  =  { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }
1110regexmidlemm 4580 . . 3  |-  E. y 
y  e.  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }
12 pp0ex 4233 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
1312rabex 4188 . . . 4  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  e.  _V
14 sseq1 3216 . . . . . 6  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( x  C_  om  <->  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  C_  om ) )
15 eleq2 2269 . . . . . . 7  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( y  e.  x  <->  y  e.  { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) } ) )
1615exbidv 1848 . . . . . 6  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( E. y  y  e.  x  <->  E. y  y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) )
1714, 16anbi12d 473 . . . . 5  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( x  C_  om  /\  E. y  y  e.  x
)  <->  ( { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  C_  om 
/\  E. y  y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
18 eleq2 2269 . . . . . . . . . 10  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( z  e.  x  <->  z  e.  { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) } ) )
1918notbid 669 . . . . . . . . 9  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( -.  z  e.  x  <->  -.  z  e.  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) } ) )
2019imbi2d 230 . . . . . . . 8  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( z  e.  y  ->  -.  z  e.  x )  <->  ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
2120albidv 1847 . . . . . . 7  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( A. z ( z  e.  y  ->  -.  z  e.  x )  <->  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
2215, 21anbi12d 473 . . . . . 6  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
)  <->  ( y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) ) )
2322exbidv 1848 . . . . 5  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) )  <->  E. y
( y  e.  {
w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) ) )
2417, 23imbi12d 234 . . . 4  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( ( x  C_  om 
/\  E. y  y  e.  x )  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )  <->  ( ( { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }  C_  om  /\  E. y  y  e.  {
w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) } )  ->  E. y ( y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) ) ) )
25 nnregexmid.1 . . . 4  |-  ( ( x  C_  om  /\  E. y  y  e.  x
)  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )
2613, 24, 25vtocl 2827 . . 3  |-  ( ( { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  C_  om 
/\  E. y  y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } )  ->  E. y ( y  e.  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
279, 11, 26mp2an 426 . 2  |-  E. y
( y  e.  {
w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) )
2810regexmidlem1 4581 . 2  |-  ( E. y ( y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) )  ->  ( ph  \/  -.  ph ) )
2927, 28ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   {crab 2488    C_ wss 3166   (/)c0 3460   {csn 3633   {cpr 3634   suc csuc 4412   omcom 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-suc 4418  df-iom 4639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator