| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnregexmid | Unicode version | ||
| Description: If inhabited sets of natural numbers always have minimal elements, excluded middle follows. The argument is essentially the same as regexmid 4596 and the larger lesson is that although natural numbers may behave "non-constructively" even in a constructive set theory (for example see nndceq 6603 or nntri3or 6597), sets of natural numbers are a different animal. (Contributed by Jim Kingdon, 6-Sep-2019.) |
| Ref | Expression |
|---|---|
| nnregexmid.1 |
|
| Ref | Expression |
|---|---|
| nnregexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3282 |
. . . 4
| |
| 2 | peano1 4655 |
. . . . 5
| |
| 3 | suc0 4471 |
. . . . . 6
| |
| 4 | peano2 4656 |
. . . . . . 7
| |
| 5 | 2, 4 | ax-mp 5 |
. . . . . 6
|
| 6 | 3, 5 | eqeltrri 2280 |
. . . . 5
|
| 7 | prssi 3797 |
. . . . 5
| |
| 8 | 2, 6, 7 | mp2an 426 |
. . . 4
|
| 9 | 1, 8 | sstri 3206 |
. . 3
|
| 10 | eqid 2206 |
. . . 4
| |
| 11 | 10 | regexmidlemm 4593 |
. . 3
|
| 12 | pp0ex 4244 |
. . . . 5
| |
| 13 | 12 | rabex 4199 |
. . . 4
|
| 14 | sseq1 3220 |
. . . . . 6
| |
| 15 | eleq2 2270 |
. . . . . . 7
| |
| 16 | 15 | exbidv 1849 |
. . . . . 6
|
| 17 | 14, 16 | anbi12d 473 |
. . . . 5
|
| 18 | eleq2 2270 |
. . . . . . . . . 10
| |
| 19 | 18 | notbid 669 |
. . . . . . . . 9
|
| 20 | 19 | imbi2d 230 |
. . . . . . . 8
|
| 21 | 20 | albidv 1848 |
. . . . . . 7
|
| 22 | 15, 21 | anbi12d 473 |
. . . . . 6
|
| 23 | 22 | exbidv 1849 |
. . . . 5
|
| 24 | 17, 23 | imbi12d 234 |
. . . 4
|
| 25 | nnregexmid.1 |
. . . 4
| |
| 26 | 13, 24, 25 | vtocl 2829 |
. . 3
|
| 27 | 9, 11, 26 | mp2an 426 |
. 2
|
| 28 | 10 | regexmidlem1 4594 |
. 2
|
| 29 | 27, 28 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-int 3895 df-suc 4431 df-iom 4652 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |