| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnregexmid | Unicode version | ||
| Description: If inhabited sets of natural numbers always have minimal elements, excluded middle follows. The argument is essentially the same as regexmid 4583 and the larger lesson is that although natural numbers may behave "non-constructively" even in a constructive set theory (for example see nndceq 6585 or nntri3or 6579), sets of natural numbers are a different animal. (Contributed by Jim Kingdon, 6-Sep-2019.) |
| Ref | Expression |
|---|---|
| nnregexmid.1 |
|
| Ref | Expression |
|---|---|
| nnregexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3278 |
. . . 4
| |
| 2 | peano1 4642 |
. . . . 5
| |
| 3 | suc0 4458 |
. . . . . 6
| |
| 4 | peano2 4643 |
. . . . . . 7
| |
| 5 | 2, 4 | ax-mp 5 |
. . . . . 6
|
| 6 | 3, 5 | eqeltrri 2279 |
. . . . 5
|
| 7 | prssi 3791 |
. . . . 5
| |
| 8 | 2, 6, 7 | mp2an 426 |
. . . 4
|
| 9 | 1, 8 | sstri 3202 |
. . 3
|
| 10 | eqid 2205 |
. . . 4
| |
| 11 | 10 | regexmidlemm 4580 |
. . 3
|
| 12 | pp0ex 4233 |
. . . . 5
| |
| 13 | 12 | rabex 4188 |
. . . 4
|
| 14 | sseq1 3216 |
. . . . . 6
| |
| 15 | eleq2 2269 |
. . . . . . 7
| |
| 16 | 15 | exbidv 1848 |
. . . . . 6
|
| 17 | 14, 16 | anbi12d 473 |
. . . . 5
|
| 18 | eleq2 2269 |
. . . . . . . . . 10
| |
| 19 | 18 | notbid 669 |
. . . . . . . . 9
|
| 20 | 19 | imbi2d 230 |
. . . . . . . 8
|
| 21 | 20 | albidv 1847 |
. . . . . . 7
|
| 22 | 15, 21 | anbi12d 473 |
. . . . . 6
|
| 23 | 22 | exbidv 1848 |
. . . . 5
|
| 24 | 17, 23 | imbi12d 234 |
. . . 4
|
| 25 | nnregexmid.1 |
. . . 4
| |
| 26 | 13, 24, 25 | vtocl 2827 |
. . 3
|
| 27 | 9, 11, 26 | mp2an 426 |
. 2
|
| 28 | 10 | regexmidlem1 4581 |
. 2
|
| 29 | 27, 28 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |