ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnregexmid Unicode version

Theorem nnregexmid 4447
Description: If inhabited sets of natural numbers always have minimal elements, excluded middle follows. The argument is essentially the same as regexmid 4364 and the larger lesson is that although natural numbers may behave "non-constructively" even in a constructive set theory (for example see nndceq 6274 or nntri3or 6268), sets of natural numbers are a different animal. (Contributed by Jim Kingdon, 6-Sep-2019.)
Hypothesis
Ref Expression
nnregexmid.1  |-  ( ( x  C_  om  /\  E. y  y  e.  x
)  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )
Assertion
Ref Expression
nnregexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y, z

Proof of Theorem nnregexmid
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3107 . . . 4  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  C_  {
(/) ,  { (/) } }
2 peano1 4422 . . . . 5  |-  (/)  e.  om
3 suc0 4247 . . . . . 6  |-  suc  (/)  =  { (/)
}
4 peano2 4423 . . . . . . 7  |-  ( (/)  e.  om  ->  suc  (/)  e.  om )
52, 4ax-mp 7 . . . . . 6  |-  suc  (/)  e.  om
63, 5eqeltrri 2162 . . . . 5  |-  { (/) }  e.  om
7 prssi 3601 . . . . 5  |-  ( (
(/)  e.  om  /\  { (/)
}  e.  om )  ->  { (/) ,  { (/) } }  C_  om )
82, 6, 7mp2an 418 . . . 4  |-  { (/) ,  { (/) } }  C_  om
91, 8sstri 3035 . . 3  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  C_  om
10 eqid 2089 . . . 4  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  =  { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }
1110regexmidlemm 4361 . . 3  |-  E. y 
y  e.  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }
12 pp0ex 4030 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
1312rabex 3989 . . . 4  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  e.  _V
14 sseq1 3048 . . . . . 6  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( x  C_  om  <->  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  C_  om ) )
15 eleq2 2152 . . . . . . 7  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( y  e.  x  <->  y  e.  { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) } ) )
1615exbidv 1754 . . . . . 6  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( E. y  y  e.  x  <->  E. y  y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) )
1714, 16anbi12d 458 . . . . 5  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( x  C_  om  /\  E. y  y  e.  x
)  <->  ( { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  C_  om 
/\  E. y  y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
18 eleq2 2152 . . . . . . . . . 10  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( z  e.  x  <->  z  e.  { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) } ) )
1918notbid 628 . . . . . . . . 9  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( -.  z  e.  x  <->  -.  z  e.  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) } ) )
2019imbi2d 229 . . . . . . . 8  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( z  e.  y  ->  -.  z  e.  x )  <->  ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
2120albidv 1753 . . . . . . 7  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( A. z ( z  e.  y  ->  -.  z  e.  x )  <->  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
2215, 21anbi12d 458 . . . . . 6  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
)  <->  ( y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) ) )
2322exbidv 1754 . . . . 5  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) )  <->  E. y
( y  e.  {
w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) ) )
2417, 23imbi12d 233 . . . 4  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( ( x  C_  om 
/\  E. y  y  e.  x )  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )  <->  ( ( { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }  C_  om  /\  E. y  y  e.  {
w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) } )  ->  E. y ( y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) ) ) )
25 nnregexmid.1 . . . 4  |-  ( ( x  C_  om  /\  E. y  y  e.  x
)  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )
2613, 24, 25vtocl 2674 . . 3  |-  ( ( { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  C_  om 
/\  E. y  y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } )  ->  E. y ( y  e.  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
279, 11, 26mp2an 418 . 2  |-  E. y
( y  e.  {
w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) )
2810regexmidlem1 4362 . 2  |-  ( E. y ( y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) )  ->  ( ph  \/  -.  ph ) )
2927, 28ax-mp 7 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 665   A.wal 1288    = wceq 1290   E.wex 1427    e. wcel 1439   {crab 2364    C_ wss 3000   (/)c0 3287   {csn 3450   {cpr 3451   suc csuc 4201   omcom 4418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-uni 3660  df-int 3695  df-suc 4207  df-iom 4419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator