| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucunielexmid | Unicode version | ||
| Description: The converse of sucunielr 4558 (where |
| Ref | Expression |
|---|---|
| ordsucunielexmid.1 |
|
| Ref | Expression |
|---|---|
| ordsucunielexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4422 |
. . . . . . . 8
| |
| 2 | ordtr 4425 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
|
| 4 | vex 2775 |
. . . . . . . 8
| |
| 5 | 4 | unisuc 4460 |
. . . . . . 7
|
| 6 | 3, 5 | sylib 122 |
. . . . . 6
|
| 7 | 6 | eleq2d 2275 |
. . . . 5
|
| 8 | 7 | adantl 277 |
. . . 4
|
| 9 | onsuc 4549 |
. . . . 5
| |
| 10 | ordsucunielexmid.1 |
. . . . . 6
| |
| 11 | eleq1 2268 |
. . . . . . . 8
| |
| 12 | suceq 4449 |
. . . . . . . . 9
| |
| 13 | 12 | eleq1d 2274 |
. . . . . . . 8
|
| 14 | 11, 13 | imbi12d 234 |
. . . . . . 7
|
| 15 | unieq 3859 |
. . . . . . . . 9
| |
| 16 | 15 | eleq2d 2275 |
. . . . . . . 8
|
| 17 | eleq2 2269 |
. . . . . . . 8
| |
| 18 | 16, 17 | imbi12d 234 |
. . . . . . 7
|
| 19 | 14, 18 | rspc2va 2891 |
. . . . . 6
|
| 20 | 10, 19 | mpan2 425 |
. . . . 5
|
| 21 | 9, 20 | sylan2 286 |
. . . 4
|
| 22 | 8, 21 | sylbird 170 |
. . 3
|
| 23 | 22 | rgen2a 2560 |
. 2
|
| 24 | 23 | onsucelsucexmid 4578 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |