| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordsucunielexmid | Unicode version | ||
| Description: The converse of sucunielr 4546 (where  | 
| Ref | Expression | 
|---|---|
| ordsucunielexmid.1 | 
 | 
| Ref | Expression | 
|---|---|
| ordsucunielexmid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eloni 4410 | 
. . . . . . . 8
 | |
| 2 | ordtr 4413 | 
. . . . . . . 8
 | |
| 3 | 1, 2 | syl 14 | 
. . . . . . 7
 | 
| 4 | vex 2766 | 
. . . . . . . 8
 | |
| 5 | 4 | unisuc 4448 | 
. . . . . . 7
 | 
| 6 | 3, 5 | sylib 122 | 
. . . . . 6
 | 
| 7 | 6 | eleq2d 2266 | 
. . . . 5
 | 
| 8 | 7 | adantl 277 | 
. . . 4
 | 
| 9 | onsuc 4537 | 
. . . . 5
 | |
| 10 | ordsucunielexmid.1 | 
. . . . . 6
 | |
| 11 | eleq1 2259 | 
. . . . . . . 8
 | |
| 12 | suceq 4437 | 
. . . . . . . . 9
 | |
| 13 | 12 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 14 | 11, 13 | imbi12d 234 | 
. . . . . . 7
 | 
| 15 | unieq 3848 | 
. . . . . . . . 9
 | |
| 16 | 15 | eleq2d 2266 | 
. . . . . . . 8
 | 
| 17 | eleq2 2260 | 
. . . . . . . 8
 | |
| 18 | 16, 17 | imbi12d 234 | 
. . . . . . 7
 | 
| 19 | 14, 18 | rspc2va 2882 | 
. . . . . 6
 | 
| 20 | 10, 19 | mpan2 425 | 
. . . . 5
 | 
| 21 | 9, 20 | sylan2 286 | 
. . . 4
 | 
| 22 | 8, 21 | sylbird 170 | 
. . 3
 | 
| 23 | 22 | rgen2a 2551 | 
. 2
 | 
| 24 | 23 | onsucelsucexmid 4566 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |