| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucunielexmid | Unicode version | ||
| Description: The converse of sucunielr 4601 (where |
| Ref | Expression |
|---|---|
| ordsucunielexmid.1 |
|
| Ref | Expression |
|---|---|
| ordsucunielexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4465 |
. . . . . . . 8
| |
| 2 | ordtr 4468 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
|
| 4 | vex 2802 |
. . . . . . . 8
| |
| 5 | 4 | unisuc 4503 |
. . . . . . 7
|
| 6 | 3, 5 | sylib 122 |
. . . . . 6
|
| 7 | 6 | eleq2d 2299 |
. . . . 5
|
| 8 | 7 | adantl 277 |
. . . 4
|
| 9 | onsuc 4592 |
. . . . 5
| |
| 10 | ordsucunielexmid.1 |
. . . . . 6
| |
| 11 | eleq1 2292 |
. . . . . . . 8
| |
| 12 | suceq 4492 |
. . . . . . . . 9
| |
| 13 | 12 | eleq1d 2298 |
. . . . . . . 8
|
| 14 | 11, 13 | imbi12d 234 |
. . . . . . 7
|
| 15 | unieq 3896 |
. . . . . . . . 9
| |
| 16 | 15 | eleq2d 2299 |
. . . . . . . 8
|
| 17 | eleq2 2293 |
. . . . . . . 8
| |
| 18 | 16, 17 | imbi12d 234 |
. . . . . . 7
|
| 19 | 14, 18 | rspc2va 2921 |
. . . . . 6
|
| 20 | 10, 19 | mpan2 425 |
. . . . 5
|
| 21 | 9, 20 | sylan2 286 |
. . . 4
|
| 22 | 8, 21 | sylbird 170 |
. . 3
|
| 23 | 22 | rgen2a 2584 |
. 2
|
| 24 | 23 | onsucelsucexmid 4621 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |