| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucunielexmid | Unicode version | ||
| Description: The converse of sucunielr 4557 (where |
| Ref | Expression |
|---|---|
| ordsucunielexmid.1 |
|
| Ref | Expression |
|---|---|
| ordsucunielexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4421 |
. . . . . . . 8
| |
| 2 | ordtr 4424 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
|
| 4 | vex 2774 |
. . . . . . . 8
| |
| 5 | 4 | unisuc 4459 |
. . . . . . 7
|
| 6 | 3, 5 | sylib 122 |
. . . . . 6
|
| 7 | 6 | eleq2d 2274 |
. . . . 5
|
| 8 | 7 | adantl 277 |
. . . 4
|
| 9 | onsuc 4548 |
. . . . 5
| |
| 10 | ordsucunielexmid.1 |
. . . . . 6
| |
| 11 | eleq1 2267 |
. . . . . . . 8
| |
| 12 | suceq 4448 |
. . . . . . . . 9
| |
| 13 | 12 | eleq1d 2273 |
. . . . . . . 8
|
| 14 | 11, 13 | imbi12d 234 |
. . . . . . 7
|
| 15 | unieq 3858 |
. . . . . . . . 9
| |
| 16 | 15 | eleq2d 2274 |
. . . . . . . 8
|
| 17 | eleq2 2268 |
. . . . . . . 8
| |
| 18 | 16, 17 | imbi12d 234 |
. . . . . . 7
|
| 19 | 14, 18 | rspc2va 2890 |
. . . . . 6
|
| 20 | 10, 19 | mpan2 425 |
. . . . 5
|
| 21 | 9, 20 | sylan2 286 |
. . . 4
|
| 22 | 8, 21 | sylbird 170 |
. . 3
|
| 23 | 22 | rgen2a 2559 |
. 2
|
| 24 | 23 | onsucelsucexmid 4577 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4412 df-on 4414 df-suc 4417 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |