ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucunielexmid Unicode version

Theorem ordsucunielexmid 4578
Description: The converse of sucunielr 4557 (where  B is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.)
Hypothesis
Ref Expression
ordsucunielexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  e. 
U. y  ->  suc  x  e.  y )
Assertion
Ref Expression
ordsucunielexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem ordsucunielexmid
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 4421 . . . . . . . 8  |-  ( b  e.  On  ->  Ord  b )
2 ordtr 4424 . . . . . . . 8  |-  ( Ord  b  ->  Tr  b
)
31, 2syl 14 . . . . . . 7  |-  ( b  e.  On  ->  Tr  b )
4 vex 2774 . . . . . . . 8  |-  b  e. 
_V
54unisuc 4459 . . . . . . 7  |-  ( Tr  b  <->  U. suc  b  =  b )
63, 5sylib 122 . . . . . 6  |-  ( b  e.  On  ->  U. suc  b  =  b )
76eleq2d 2274 . . . . 5  |-  ( b  e.  On  ->  (
a  e.  U. suc  b 
<->  a  e.  b ) )
87adantl 277 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  e.  U. suc  b  <->  a  e.  b ) )
9 onsuc 4548 . . . . 5  |-  ( b  e.  On  ->  suc  b  e.  On )
10 ordsucunielexmid.1 . . . . . 6  |-  A. x  e.  On  A. y  e.  On  ( x  e. 
U. y  ->  suc  x  e.  y )
11 eleq1 2267 . . . . . . . 8  |-  ( x  =  a  ->  (
x  e.  U. y  <->  a  e.  U. y ) )
12 suceq 4448 . . . . . . . . 9  |-  ( x  =  a  ->  suc  x  =  suc  a )
1312eleq1d 2273 . . . . . . . 8  |-  ( x  =  a  ->  ( suc  x  e.  y  <->  suc  a  e.  y ) )
1411, 13imbi12d 234 . . . . . . 7  |-  ( x  =  a  ->  (
( x  e.  U. y  ->  suc  x  e.  y )  <->  ( a  e.  U. y  ->  suc  a  e.  y )
) )
15 unieq 3858 . . . . . . . . 9  |-  ( y  =  suc  b  ->  U. y  =  U. suc  b )
1615eleq2d 2274 . . . . . . . 8  |-  ( y  =  suc  b  -> 
( a  e.  U. y 
<->  a  e.  U. suc  b ) )
17 eleq2 2268 . . . . . . . 8  |-  ( y  =  suc  b  -> 
( suc  a  e.  y 
<->  suc  a  e.  suc  b ) )
1816, 17imbi12d 234 . . . . . . 7  |-  ( y  =  suc  b  -> 
( ( a  e. 
U. y  ->  suc  a  e.  y )  <->  ( a  e.  U. suc  b  ->  suc  a  e.  suc  b ) ) )
1914, 18rspc2va 2890 . . . . . 6  |-  ( ( ( a  e.  On  /\ 
suc  b  e.  On )  /\  A. x  e.  On  A. y  e.  On  ( x  e. 
U. y  ->  suc  x  e.  y )
)  ->  ( a  e.  U. suc  b  ->  suc  a  e.  suc  b ) )
2010, 19mpan2 425 . . . . 5  |-  ( ( a  e.  On  /\  suc  b  e.  On )  ->  ( a  e. 
U. suc  b  ->  suc  a  e.  suc  b
) )
219, 20sylan2 286 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  e.  U. suc  b  ->  suc  a  e.  suc  b ) )
228, 21sylbird 170 . . 3  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  e.  b  ->  suc  a  e.  suc  b ) )
2322rgen2a 2559 . 2  |-  A. a  e.  On  A. b  e.  On  ( a  e.  b  ->  suc  a  e. 
suc  b )
2423onsucelsucexmid 4577 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1372    e. wcel 2175   A.wral 2483   U.cuni 3849   Tr wtr 4141   Ord word 4408   Oncon0 4409   suc csuc 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-tr 4142  df-iord 4412  df-on 4414  df-suc 4417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator