| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucunielexmid | Unicode version | ||
| Description: The converse of sucunielr 4571 (where |
| Ref | Expression |
|---|---|
| ordsucunielexmid.1 |
|
| Ref | Expression |
|---|---|
| ordsucunielexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4435 |
. . . . . . . 8
| |
| 2 | ordtr 4438 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
|
| 4 | vex 2776 |
. . . . . . . 8
| |
| 5 | 4 | unisuc 4473 |
. . . . . . 7
|
| 6 | 3, 5 | sylib 122 |
. . . . . 6
|
| 7 | 6 | eleq2d 2276 |
. . . . 5
|
| 8 | 7 | adantl 277 |
. . . 4
|
| 9 | onsuc 4562 |
. . . . 5
| |
| 10 | ordsucunielexmid.1 |
. . . . . 6
| |
| 11 | eleq1 2269 |
. . . . . . . 8
| |
| 12 | suceq 4462 |
. . . . . . . . 9
| |
| 13 | 12 | eleq1d 2275 |
. . . . . . . 8
|
| 14 | 11, 13 | imbi12d 234 |
. . . . . . 7
|
| 15 | unieq 3868 |
. . . . . . . . 9
| |
| 16 | 15 | eleq2d 2276 |
. . . . . . . 8
|
| 17 | eleq2 2270 |
. . . . . . . 8
| |
| 18 | 16, 17 | imbi12d 234 |
. . . . . . 7
|
| 19 | 14, 18 | rspc2va 2895 |
. . . . . 6
|
| 20 | 10, 19 | mpan2 425 |
. . . . 5
|
| 21 | 9, 20 | sylan2 286 |
. . . 4
|
| 22 | 8, 21 | sylbird 170 |
. . 3
|
| 23 | 22 | rgen2a 2561 |
. 2
|
| 24 | 23 | onsucelsucexmid 4591 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-tr 4154 df-iord 4426 df-on 4428 df-suc 4431 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |