Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsucunielexmid | Unicode version |
Description: The converse of sucunielr 4463 (where is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
ordsucunielexmid.1 |
Ref | Expression |
---|---|
ordsucunielexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4330 | . . . . . . . 8 | |
2 | ordtr 4333 | . . . . . . . 8 | |
3 | 1, 2 | syl 14 | . . . . . . 7 |
4 | vex 2712 | . . . . . . . 8 | |
5 | 4 | unisuc 4368 | . . . . . . 7 |
6 | 3, 5 | sylib 121 | . . . . . 6 |
7 | 6 | eleq2d 2224 | . . . . 5 |
8 | 7 | adantl 275 | . . . 4 |
9 | suceloni 4454 | . . . . 5 | |
10 | ordsucunielexmid.1 | . . . . . 6 | |
11 | eleq1 2217 | . . . . . . . 8 | |
12 | suceq 4357 | . . . . . . . . 9 | |
13 | 12 | eleq1d 2223 | . . . . . . . 8 |
14 | 11, 13 | imbi12d 233 | . . . . . . 7 |
15 | unieq 3777 | . . . . . . . . 9 | |
16 | 15 | eleq2d 2224 | . . . . . . . 8 |
17 | eleq2 2218 | . . . . . . . 8 | |
18 | 16, 17 | imbi12d 233 | . . . . . . 7 |
19 | 14, 18 | rspc2va 2827 | . . . . . 6 |
20 | 10, 19 | mpan2 422 | . . . . 5 |
21 | 9, 20 | sylan2 284 | . . . 4 |
22 | 8, 21 | sylbird 169 | . . 3 |
23 | 22 | rgen2a 2508 | . 2 |
24 | 23 | onsucelsucexmid 4483 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1332 wcel 2125 wral 2432 cuni 3768 wtr 4058 word 4317 con0 4318 csuc 4320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-uni 3769 df-tr 4059 df-iord 4321 df-on 4323 df-suc 4326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |