ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  regexmidlemm GIF version

Theorem regexmidlemm 4525
Description: Lemma for regexmid 4528. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
Hypothesis
Ref Expression
regexmidlemm.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
Assertion
Ref Expression
regexmidlemm 𝑦 𝑦𝐴
Distinct variable groups:   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem regexmidlemm
StepHypRef Expression
1 p0ex 4183 . . . 4 {∅} ∈ V
21prid2 3696 . . 3 {∅} ∈ {∅, {∅}}
3 eqid 2175 . . . 4 {∅} = {∅}
43orci 731 . . 3 ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))
5 eqeq1 2182 . . . . 5 (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅}))
6 eqeq1 2182 . . . . . 6 (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅))
76anbi1d 465 . . . . 5 (𝑥 = {∅} → ((𝑥 = ∅ ∧ 𝜑) ↔ ({∅} = ∅ ∧ 𝜑)))
85, 7orbi12d 793 . . . 4 (𝑥 = {∅} → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))))
9 regexmidlemm.a . . . 4 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
108, 9elrab2 2894 . . 3 ({∅} ∈ 𝐴 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))))
112, 4, 10mpbir2an 942 . 2 {∅} ∈ 𝐴
12 elex2 2751 . 2 ({∅} ∈ 𝐴 → ∃𝑦 𝑦𝐴)
1311, 12ax-mp 5 1 𝑦 𝑦𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wo 708   = wceq 1353  wex 1490  wcel 2146  {crab 2457  c0 3420  {csn 3589  {cpr 3590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596
This theorem is referenced by:  regexmid  4528  reg2exmid  4529  reg3exmid  4573  nnregexmid  4614
  Copyright terms: Public domain W3C validator