| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > regexmidlemm | GIF version | ||
| Description: Lemma for regexmid 4626. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.) |
| Ref | Expression |
|---|---|
| regexmidlemm.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} |
| Ref | Expression |
|---|---|
| regexmidlemm | ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0ex 4271 | . . . 4 ⊢ {∅} ∈ V | |
| 2 | 1 | prid2 3773 | . . 3 ⊢ {∅} ∈ {∅, {∅}} |
| 3 | eqid 2229 | . . . 4 ⊢ {∅} = {∅} | |
| 4 | 3 | orci 736 | . . 3 ⊢ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)) |
| 5 | eqeq1 2236 | . . . . 5 ⊢ (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅})) | |
| 6 | eqeq1 2236 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅)) | |
| 7 | 6 | anbi1d 465 | . . . . 5 ⊢ (𝑥 = {∅} → ((𝑥 = ∅ ∧ 𝜑) ↔ ({∅} = ∅ ∧ 𝜑))) |
| 8 | 5, 7 | orbi12d 798 | . . . 4 ⊢ (𝑥 = {∅} → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
| 9 | regexmidlemm.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} | |
| 10 | 8, 9 | elrab2 2962 | . . 3 ⊢ ({∅} ∈ 𝐴 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
| 11 | 2, 4, 10 | mpbir2an 948 | . 2 ⊢ {∅} ∈ 𝐴 |
| 12 | elex2 2816 | . 2 ⊢ ({∅} ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐴) | |
| 13 | 11, 12 | ax-mp 5 | 1 ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∨ wo 713 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {crab 2512 ∅c0 3491 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: regexmid 4626 reg2exmid 4627 reg3exmid 4671 nnregexmid 4712 |
| Copyright terms: Public domain | W3C validator |