Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > regexmidlemm | GIF version |
Description: Lemma for regexmid 4519. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.) |
Ref | Expression |
---|---|
regexmidlemm.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} |
Ref | Expression |
---|---|
regexmidlemm | ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 4174 | . . . 4 ⊢ {∅} ∈ V | |
2 | 1 | prid2 3690 | . . 3 ⊢ {∅} ∈ {∅, {∅}} |
3 | eqid 2170 | . . . 4 ⊢ {∅} = {∅} | |
4 | 3 | orci 726 | . . 3 ⊢ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)) |
5 | eqeq1 2177 | . . . . 5 ⊢ (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅})) | |
6 | eqeq1 2177 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅)) | |
7 | 6 | anbi1d 462 | . . . . 5 ⊢ (𝑥 = {∅} → ((𝑥 = ∅ ∧ 𝜑) ↔ ({∅} = ∅ ∧ 𝜑))) |
8 | 5, 7 | orbi12d 788 | . . . 4 ⊢ (𝑥 = {∅} → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
9 | regexmidlemm.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} | |
10 | 8, 9 | elrab2 2889 | . . 3 ⊢ ({∅} ∈ 𝐴 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
11 | 2, 4, 10 | mpbir2an 937 | . 2 ⊢ {∅} ∈ 𝐴 |
12 | elex2 2746 | . 2 ⊢ ({∅} ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐴) | |
13 | 11, 12 | ax-mp 5 | 1 ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∨ wo 703 = wceq 1348 ∃wex 1485 ∈ wcel 2141 {crab 2452 ∅c0 3414 {csn 3583 {cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 |
This theorem is referenced by: regexmid 4519 reg2exmid 4520 reg3exmid 4564 nnregexmid 4605 |
Copyright terms: Public domain | W3C validator |