![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > regexmidlemm | GIF version |
Description: Lemma for regexmid 4536. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.) |
Ref | Expression |
---|---|
regexmidlemm.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} |
Ref | Expression |
---|---|
regexmidlemm | ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 4190 | . . . 4 ⊢ {∅} ∈ V | |
2 | 1 | prid2 3701 | . . 3 ⊢ {∅} ∈ {∅, {∅}} |
3 | eqid 2177 | . . . 4 ⊢ {∅} = {∅} | |
4 | 3 | orci 731 | . . 3 ⊢ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)) |
5 | eqeq1 2184 | . . . . 5 ⊢ (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅})) | |
6 | eqeq1 2184 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅)) | |
7 | 6 | anbi1d 465 | . . . . 5 ⊢ (𝑥 = {∅} → ((𝑥 = ∅ ∧ 𝜑) ↔ ({∅} = ∅ ∧ 𝜑))) |
8 | 5, 7 | orbi12d 793 | . . . 4 ⊢ (𝑥 = {∅} → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
9 | regexmidlemm.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} | |
10 | 8, 9 | elrab2 2898 | . . 3 ⊢ ({∅} ∈ 𝐴 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
11 | 2, 4, 10 | mpbir2an 942 | . 2 ⊢ {∅} ∈ 𝐴 |
12 | elex2 2755 | . 2 ⊢ ({∅} ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐴) | |
13 | 11, 12 | ax-mp 5 | 1 ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∨ wo 708 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {crab 2459 ∅c0 3424 {csn 3594 {cpr 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 |
This theorem is referenced by: regexmid 4536 reg2exmid 4537 reg3exmid 4581 nnregexmid 4622 |
Copyright terms: Public domain | W3C validator |