ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  regexmidlemm GIF version

Theorem regexmidlemm 4568
Description: Lemma for regexmid 4571. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
Hypothesis
Ref Expression
regexmidlemm.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
Assertion
Ref Expression
regexmidlemm 𝑦 𝑦𝐴
Distinct variable groups:   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem regexmidlemm
StepHypRef Expression
1 p0ex 4221 . . . 4 {∅} ∈ V
21prid2 3729 . . 3 {∅} ∈ {∅, {∅}}
3 eqid 2196 . . . 4 {∅} = {∅}
43orci 732 . . 3 ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))
5 eqeq1 2203 . . . . 5 (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅}))
6 eqeq1 2203 . . . . . 6 (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅))
76anbi1d 465 . . . . 5 (𝑥 = {∅} → ((𝑥 = ∅ ∧ 𝜑) ↔ ({∅} = ∅ ∧ 𝜑)))
85, 7orbi12d 794 . . . 4 (𝑥 = {∅} → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))))
9 regexmidlemm.a . . . 4 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
108, 9elrab2 2923 . . 3 ({∅} ∈ 𝐴 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))))
112, 4, 10mpbir2an 944 . 2 {∅} ∈ 𝐴
12 elex2 2779 . 2 ({∅} ∈ 𝐴 → ∃𝑦 𝑦𝐴)
1311, 12ax-mp 5 1 𝑦 𝑦𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709   = wceq 1364  wex 1506  wcel 2167  {crab 2479  c0 3450  {csn 3622  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629
This theorem is referenced by:  regexmid  4571  reg2exmid  4572  reg3exmid  4616  nnregexmid  4657
  Copyright terms: Public domain W3C validator