Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > regexmidlemm | GIF version |
Description: Lemma for regexmid 4528. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.) |
Ref | Expression |
---|---|
regexmidlemm.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} |
Ref | Expression |
---|---|
regexmidlemm | ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 4183 | . . . 4 ⊢ {∅} ∈ V | |
2 | 1 | prid2 3696 | . . 3 ⊢ {∅} ∈ {∅, {∅}} |
3 | eqid 2175 | . . . 4 ⊢ {∅} = {∅} | |
4 | 3 | orci 731 | . . 3 ⊢ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)) |
5 | eqeq1 2182 | . . . . 5 ⊢ (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅})) | |
6 | eqeq1 2182 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅)) | |
7 | 6 | anbi1d 465 | . . . . 5 ⊢ (𝑥 = {∅} → ((𝑥 = ∅ ∧ 𝜑) ↔ ({∅} = ∅ ∧ 𝜑))) |
8 | 5, 7 | orbi12d 793 | . . . 4 ⊢ (𝑥 = {∅} → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
9 | regexmidlemm.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} | |
10 | 8, 9 | elrab2 2894 | . . 3 ⊢ ({∅} ∈ 𝐴 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
11 | 2, 4, 10 | mpbir2an 942 | . 2 ⊢ {∅} ∈ 𝐴 |
12 | elex2 2751 | . 2 ⊢ ({∅} ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐴) | |
13 | 11, 12 | ax-mp 5 | 1 ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∨ wo 708 = wceq 1353 ∃wex 1490 ∈ wcel 2146 {crab 2457 ∅c0 3420 {csn 3589 {cpr 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 |
This theorem is referenced by: regexmid 4528 reg2exmid 4529 reg3exmid 4573 nnregexmid 4614 |
Copyright terms: Public domain | W3C validator |