ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  regexmidlemm GIF version

Theorem regexmidlemm 4593
Description: Lemma for regexmid 4596. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
Hypothesis
Ref Expression
regexmidlemm.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
Assertion
Ref Expression
regexmidlemm 𝑦 𝑦𝐴
Distinct variable groups:   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem regexmidlemm
StepHypRef Expression
1 p0ex 4243 . . . 4 {∅} ∈ V
21prid2 3745 . . 3 {∅} ∈ {∅, {∅}}
3 eqid 2206 . . . 4 {∅} = {∅}
43orci 733 . . 3 ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))
5 eqeq1 2213 . . . . 5 (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅}))
6 eqeq1 2213 . . . . . 6 (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅))
76anbi1d 465 . . . . 5 (𝑥 = {∅} → ((𝑥 = ∅ ∧ 𝜑) ↔ ({∅} = ∅ ∧ 𝜑)))
85, 7orbi12d 795 . . . 4 (𝑥 = {∅} → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))))
9 regexmidlemm.a . . . 4 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
108, 9elrab2 2936 . . 3 ({∅} ∈ 𝐴 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))))
112, 4, 10mpbir2an 945 . 2 {∅} ∈ 𝐴
12 elex2 2790 . 2 ({∅} ∈ 𝐴 → ∃𝑦 𝑦𝐴)
1311, 12ax-mp 5 1 𝑦 𝑦𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wo 710   = wceq 1373  wex 1516  wcel 2177  {crab 2489  c0 3464  {csn 3638  {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645
This theorem is referenced by:  regexmid  4596  reg2exmid  4597  reg3exmid  4641  nnregexmid  4682
  Copyright terms: Public domain W3C validator