ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  regexmidlemm GIF version

Theorem regexmidlemm 4623
Description: Lemma for regexmid 4626. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
Hypothesis
Ref Expression
regexmidlemm.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
Assertion
Ref Expression
regexmidlemm 𝑦 𝑦𝐴
Distinct variable groups:   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem regexmidlemm
StepHypRef Expression
1 p0ex 4271 . . . 4 {∅} ∈ V
21prid2 3773 . . 3 {∅} ∈ {∅, {∅}}
3 eqid 2229 . . . 4 {∅} = {∅}
43orci 736 . . 3 ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))
5 eqeq1 2236 . . . . 5 (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅}))
6 eqeq1 2236 . . . . . 6 (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅))
76anbi1d 465 . . . . 5 (𝑥 = {∅} → ((𝑥 = ∅ ∧ 𝜑) ↔ ({∅} = ∅ ∧ 𝜑)))
85, 7orbi12d 798 . . . 4 (𝑥 = {∅} → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))))
9 regexmidlemm.a . . . 4 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
108, 9elrab2 2962 . . 3 ({∅} ∈ 𝐴 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑))))
112, 4, 10mpbir2an 948 . 2 {∅} ∈ 𝐴
12 elex2 2816 . 2 ({∅} ∈ 𝐴 → ∃𝑦 𝑦𝐴)
1311, 12ax-mp 5 1 𝑦 𝑦𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  {crab 2512  c0 3491  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by:  regexmid  4626  reg2exmid  4627  reg3exmid  4671  nnregexmid  4712
  Copyright terms: Public domain W3C validator