Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > regexmidlemm | GIF version |
Description: Lemma for regexmid 4512. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.) |
Ref | Expression |
---|---|
regexmidlemm.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} |
Ref | Expression |
---|---|
regexmidlemm | ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 4167 | . . . 4 ⊢ {∅} ∈ V | |
2 | 1 | prid2 3683 | . . 3 ⊢ {∅} ∈ {∅, {∅}} |
3 | eqid 2165 | . . . 4 ⊢ {∅} = {∅} | |
4 | 3 | orci 721 | . . 3 ⊢ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)) |
5 | eqeq1 2172 | . . . . 5 ⊢ (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅})) | |
6 | eqeq1 2172 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅)) | |
7 | 6 | anbi1d 461 | . . . . 5 ⊢ (𝑥 = {∅} → ((𝑥 = ∅ ∧ 𝜑) ↔ ({∅} = ∅ ∧ 𝜑))) |
8 | 5, 7 | orbi12d 783 | . . . 4 ⊢ (𝑥 = {∅} → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
9 | regexmidlemm.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} | |
10 | 8, 9 | elrab2 2885 | . . 3 ⊢ ({∅} ∈ 𝐴 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ ({∅} = ∅ ∧ 𝜑)))) |
11 | 2, 4, 10 | mpbir2an 932 | . 2 ⊢ {∅} ∈ 𝐴 |
12 | elex2 2742 | . 2 ⊢ ({∅} ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐴) | |
13 | 11, 12 | ax-mp 5 | 1 ⊢ ∃𝑦 𝑦 ∈ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∨ wo 698 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {crab 2448 ∅c0 3409 {csn 3576 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 |
This theorem is referenced by: regexmid 4512 reg2exmid 4513 reg3exmid 4557 nnregexmid 4598 |
Copyright terms: Public domain | W3C validator |