ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldmb GIF version

Theorem releldmb 4957
Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
releldmb (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem releldmb
StepHypRef Expression
1 eldmg 4915 . . 3 (𝐴 ∈ dom 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
21ibi 176 . 2 (𝐴 ∈ dom 𝑅 → ∃𝑥 𝐴𝑅𝑥)
3 releldm 4955 . . . 4 ((Rel 𝑅𝐴𝑅𝑥) → 𝐴 ∈ dom 𝑅)
43ex 115 . . 3 (Rel 𝑅 → (𝐴𝑅𝑥𝐴 ∈ dom 𝑅))
54exlimdv 1865 . 2 (Rel 𝑅 → (∃𝑥 𝐴𝑅𝑥𝐴 ∈ dom 𝑅))
62, 5impbid2 143 1 (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1538  wcel 2200   class class class wbr 4082  dom cdm 4716  Rel wrel 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-dm 4726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator