| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releldmb | GIF version | ||
| Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.) |
| Ref | Expression |
|---|---|
| releldmb | ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg 4915 | . . 3 ⊢ (𝐴 ∈ dom 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 2 | 1 | ibi 176 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → ∃𝑥 𝐴𝑅𝑥) |
| 3 | releldm 4955 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝑥) → 𝐴 ∈ dom 𝑅) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝑥 → 𝐴 ∈ dom 𝑅)) |
| 5 | 4 | exlimdv 1865 | . 2 ⊢ (Rel 𝑅 → (∃𝑥 𝐴𝑅𝑥 → 𝐴 ∈ dom 𝑅)) |
| 6 | 2, 5 | impbid2 143 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1538 ∈ wcel 2200 class class class wbr 4082 dom cdm 4716 Rel wrel 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-dm 4726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |