ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldmb GIF version

Theorem releldmb 4687
Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
releldmb (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem releldmb
StepHypRef Expression
1 eldmg 4646 . . 3 (𝐴 ∈ dom 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
21ibi 175 . 2 (𝐴 ∈ dom 𝑅 → ∃𝑥 𝐴𝑅𝑥)
3 releldm 4685 . . . 4 ((Rel 𝑅𝐴𝑅𝑥) → 𝐴 ∈ dom 𝑅)
43ex 114 . . 3 (Rel 𝑅 → (𝐴𝑅𝑥𝐴 ∈ dom 𝑅))
54exlimdv 1748 . 2 (Rel 𝑅 → (∃𝑥 𝐴𝑅𝑥𝐴 ∈ dom 𝑅))
62, 5impbid2 142 1 (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1427  wcel 1439   class class class wbr 3853  dom cdm 4454  Rel wrel 4459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-br 3854  df-opab 3908  df-xp 4460  df-rel 4461  df-dm 4464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator