| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releldmb | GIF version | ||
| Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.) |
| Ref | Expression |
|---|---|
| releldmb | ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg 4879 | . . 3 ⊢ (𝐴 ∈ dom 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 2 | 1 | ibi 176 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → ∃𝑥 𝐴𝑅𝑥) |
| 3 | releldm 4919 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝑥) → 𝐴 ∈ dom 𝑅) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝑥 → 𝐴 ∈ dom 𝑅)) |
| 5 | 4 | exlimdv 1843 | . 2 ⊢ (Rel 𝑅 → (∃𝑥 𝐴𝑅𝑥 → 𝐴 ∈ dom 𝑅)) |
| 6 | 2, 5 | impbid2 143 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 class class class wbr 4048 dom cdm 4680 Rel wrel 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-xp 4686 df-rel 4687 df-dm 4690 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |