ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecss Unicode version

Theorem ecss 6632
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1  |-  ( ph  ->  R  Er  X )
Assertion
Ref Expression
ecss  |-  ( ph  ->  [ A ] R  C_  X )

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 6591 . . 3  |-  [ A ] R  =  ( R " { A }
)
2 imassrn 5017 . . 3  |-  ( R
" { A }
)  C_  ran  R
31, 2eqsstri 3212 . 2  |-  [ A ] R  C_  ran  R
4 ecss.1 . . 3  |-  ( ph  ->  R  Er  X )
5 errn 6611 . . 3  |-  ( R  Er  X  ->  ran  R  =  X )
64, 5syl 14 . 2  |-  ( ph  ->  ran  R  =  X )
73, 6sseqtrid 3230 1  |-  ( ph  ->  [ A ] R  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3154   {csn 3619   ran crn 4661   "cima 4663    Er wer 6586   [cec 6587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-er 6589  df-ec 6591
This theorem is referenced by:  qsss  6650  divsfval  12914  divsfvalg  12915
  Copyright terms: Public domain W3C validator