ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecss Unicode version

Theorem ecss 6542
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1  |-  ( ph  ->  R  Er  X )
Assertion
Ref Expression
ecss  |-  ( ph  ->  [ A ] R  C_  X )

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 6503 . . 3  |-  [ A ] R  =  ( R " { A }
)
2 imassrn 4957 . . 3  |-  ( R
" { A }
)  C_  ran  R
31, 2eqsstri 3174 . 2  |-  [ A ] R  C_  ran  R
4 ecss.1 . . 3  |-  ( ph  ->  R  Er  X )
5 errn 6523 . . 3  |-  ( R  Er  X  ->  ran  R  =  X )
64, 5syl 14 . 2  |-  ( ph  ->  ran  R  =  X )
73, 6sseqtrid 3192 1  |-  ( ph  ->  [ A ] R  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    C_ wss 3116   {csn 3576   ran crn 4605   "cima 4607    Er wer 6498   [cec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-er 6501  df-ec 6503
This theorem is referenced by:  qsss  6560
  Copyright terms: Public domain W3C validator