| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2 | Unicode version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4678 |
. . 3
| |
| 2 | 1 | ineq2d 3365 |
. 2
|
| 3 | df-res 4676 |
. 2
| |
| 4 | df-res 4676 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-opab 4096 df-xp 4670 df-res 4676 |
| This theorem is referenced by: reseq2i 4944 reseq2d 4947 resabs1 4976 resima2 4981 imaeq2 5006 resdisj 5099 relcoi1 5202 fressnfv 5752 tfrlem1 6375 tfrlem9 6386 tfr0dm 6389 tfrlemisucaccv 6392 tfrlemiubacc 6397 tfr1onlemsucaccv 6408 tfr1onlemubacc 6413 tfr1onlemaccex 6415 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 tfrcllemubacc 6426 tfrcllemaccex 6428 tfrcllemres 6429 tfrcldm 6430 fnfi 7011 lmbr2 14534 lmff 14569 dvmptid 15036 |
| Copyright terms: Public domain | W3C validator |