| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2 | Unicode version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4690 |
. . 3
| |
| 2 | 1 | ineq2d 3374 |
. 2
|
| 3 | df-res 4688 |
. 2
| |
| 4 | df-res 4688 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-opab 4107 df-xp 4682 df-res 4688 |
| This theorem is referenced by: reseq2i 4957 reseq2d 4960 resabs1 4989 resima2 4994 imaeq2 5019 resdisj 5112 relcoi1 5215 fressnfv 5773 tfrlem1 6396 tfrlem9 6407 tfr0dm 6410 tfrlemisucaccv 6413 tfrlemiubacc 6418 tfr1onlemsucaccv 6429 tfr1onlemubacc 6434 tfr1onlemaccex 6436 tfrcllemsucaccv 6442 tfrcllembxssdm 6444 tfrcllemubacc 6447 tfrcllemaccex 6449 tfrcllemres 6450 tfrcldm 6451 fnfi 7040 lmbr2 14719 lmff 14754 dvmptid 15221 |
| Copyright terms: Public domain | W3C validator |