Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq2 | Unicode version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4634 | . . 3 | |
2 | 1 | ineq2d 3334 | . 2 |
3 | df-res 4632 | . 2 | |
4 | df-res 4632 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 cvv 2735 cin 3126 cxp 4618 cres 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-opab 4060 df-xp 4626 df-res 4632 |
This theorem is referenced by: reseq2i 4897 reseq2d 4900 resabs1 4929 resima2 4934 imaeq2 4959 resdisj 5049 relcoi1 5152 fressnfv 5695 tfrlem1 6299 tfrlem9 6310 tfr0dm 6313 tfrlemisucaccv 6316 tfrlemiubacc 6321 tfr1onlemsucaccv 6332 tfr1onlemubacc 6337 tfr1onlemaccex 6339 tfrcllemsucaccv 6345 tfrcllembxssdm 6347 tfrcllemubacc 6350 tfrcllemaccex 6352 tfrcllemres 6353 tfrcldm 6354 fnfi 6926 lmbr2 13283 lmff 13318 |
Copyright terms: Public domain | W3C validator |