| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2 | Unicode version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4707 |
. . 3
| |
| 2 | 1 | ineq2d 3382 |
. 2
|
| 3 | df-res 4705 |
. 2
| |
| 4 | df-res 4705 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-opab 4122 df-xp 4699 df-res 4705 |
| This theorem is referenced by: reseq2i 4975 reseq2d 4978 resabs1 5007 resima2 5012 imaeq2 5037 resdisj 5130 relcoi1 5233 fressnfv 5794 tfrlem1 6417 tfrlem9 6428 tfr0dm 6431 tfrlemisucaccv 6434 tfrlemiubacc 6439 tfr1onlemsucaccv 6450 tfr1onlemubacc 6455 tfr1onlemaccex 6457 tfrcllemsucaccv 6463 tfrcllembxssdm 6465 tfrcllemubacc 6468 tfrcllemaccex 6470 tfrcllemres 6471 tfrcldm 6472 fnfi 7064 lmbr2 14801 lmff 14836 dvmptid 15303 |
| Copyright terms: Public domain | W3C validator |