| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2 | Unicode version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4689 |
. . 3
| |
| 2 | 1 | ineq2d 3374 |
. 2
|
| 3 | df-res 4687 |
. 2
| |
| 4 | df-res 4687 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-opab 4106 df-xp 4681 df-res 4687 |
| This theorem is referenced by: reseq2i 4956 reseq2d 4959 resabs1 4988 resima2 4993 imaeq2 5018 resdisj 5111 relcoi1 5214 fressnfv 5771 tfrlem1 6394 tfrlem9 6405 tfr0dm 6408 tfrlemisucaccv 6411 tfrlemiubacc 6416 tfr1onlemsucaccv 6427 tfr1onlemubacc 6432 tfr1onlemaccex 6434 tfrcllemsucaccv 6440 tfrcllembxssdm 6442 tfrcllemubacc 6445 tfrcllemaccex 6447 tfrcllemres 6448 tfrcldm 6449 fnfi 7038 lmbr2 14686 lmff 14721 dvmptid 15188 |
| Copyright terms: Public domain | W3C validator |