| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reseq2 | Unicode version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| reseq2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpeq1 4677 | 
. . 3
 | |
| 2 | 1 | ineq2d 3364 | 
. 2
 | 
| 3 | df-res 4675 | 
. 2
 | |
| 4 | df-res 4675 | 
. 2
 | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-opab 4095 df-xp 4669 df-res 4675 | 
| This theorem is referenced by: reseq2i 4943 reseq2d 4946 resabs1 4975 resima2 4980 imaeq2 5005 resdisj 5098 relcoi1 5201 fressnfv 5749 tfrlem1 6366 tfrlem9 6377 tfr0dm 6380 tfrlemisucaccv 6383 tfrlemiubacc 6388 tfr1onlemsucaccv 6399 tfr1onlemubacc 6404 tfr1onlemaccex 6406 tfrcllemsucaccv 6412 tfrcllembxssdm 6414 tfrcllemubacc 6417 tfrcllemaccex 6419 tfrcllemres 6420 tfrcldm 6421 fnfi 7002 lmbr2 14450 lmff 14485 dvmptid 14952 | 
| Copyright terms: Public domain | W3C validator |