| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2 | Unicode version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4733 |
. . 3
| |
| 2 | 1 | ineq2d 3405 |
. 2
|
| 3 | df-res 4731 |
. 2
| |
| 4 | df-res 4731 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-opab 4146 df-xp 4725 df-res 4731 |
| This theorem is referenced by: reseq2i 5002 reseq2d 5005 resabs1 5034 resima2 5039 imaeq2 5064 resdisj 5157 relcoi1 5260 fressnfv 5826 tfrlem1 6454 tfrlem9 6465 tfr0dm 6468 tfrlemisucaccv 6471 tfrlemiubacc 6476 tfr1onlemsucaccv 6487 tfr1onlemubacc 6492 tfr1onlemaccex 6494 tfrcllemsucaccv 6500 tfrcllembxssdm 6502 tfrcllemubacc 6505 tfrcllemaccex 6507 tfrcllemres 6508 tfrcldm 6509 fnfi 7103 lmbr2 14888 lmff 14923 dvmptid 15390 |
| Copyright terms: Public domain | W3C validator |