ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexg Unicode version

Theorem funimaexg 5372
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexg
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  Fun  A )
2 funrel 5302 . . 3  |-  ( Fun 
A  ->  Rel  A )
3 resres 4985 . . . . . . 7  |-  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  ( dom  A  i^i  B ) )
4 incom 3369 . . . . . . . 8  |-  ( B  i^i  dom  A )  =  ( dom  A  i^i  B )
54reseq2i 4970 . . . . . . 7  |-  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  ( dom  A  i^i  B ) )
63, 5eqtr4i 2230 . . . . . 6  |-  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  ( B  i^i  dom  A ) )
7 resdm 5012 . . . . . . 7  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
87reseq1d 4972 . . . . . 6  |-  ( Rel 
A  ->  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  B )
)
96, 8eqtr3id 2253 . . . . 5  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)
109rneqd 4921 . . . 4  |-  ( Rel 
A  ->  ran  ( A  |`  ( B  i^i  dom  A ) )  =  ran  ( A  |`  B ) )
11 df-ima 4701 . . . 4  |-  ( A
" ( B  i^i  dom 
A ) )  =  ran  ( A  |`  ( B  i^i  dom  A
) )
12 df-ima 4701 . . . 4  |-  ( A
" B )  =  ran  ( A  |`  B )
1310, 11, 123eqtr4g 2264 . . 3  |-  ( Rel 
A  ->  ( A " ( B  i^i  dom  A ) )  =  ( A " B ) )
141, 2, 133syl 17 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " ( B  i^i  dom 
A ) )  =  ( A " B
) )
15 inex1g 4191 . . 3  |-  ( B  e.  C  ->  ( B  i^i  dom  A )  e.  _V )
16 inss2 3398 . . . 4  |-  ( B  i^i  dom  A )  C_ 
dom  A
17 funimaexglem 5371 . . . 4  |-  ( ( Fun  A  /\  ( B  i^i  dom  A )  e.  _V  /\  ( B  i^i  dom  A )  C_ 
dom  A )  -> 
( A " ( B  i^i  dom  A )
)  e.  _V )
1816, 17mp3an3 1339 . . 3  |-  ( ( Fun  A  /\  ( B  i^i  dom  A )  e.  _V )  ->  ( A " ( B  i^i  dom 
A ) )  e. 
_V )
1915, 18sylan2 286 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " ( B  i^i  dom 
A ) )  e. 
_V )
2014, 19eqeltrrd 2284 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773    i^i cin 3169    C_ wss 3170   dom cdm 4688   ran crn 4689    |` cres 4690   "cima 4691   Rel wrel 4693   Fun wfun 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5287
This theorem is referenced by:  funimaex  5373  resfunexg  5823  resfunexgALT  6211  fnexALT  6214  suplocexprlem2b  7857  suplocexprlemlub  7867
  Copyright terms: Public domain W3C validator