ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexg Unicode version

Theorem funimaexg 5302
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexg
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  Fun  A )
2 funrel 5235 . . 3  |-  ( Fun 
A  ->  Rel  A )
3 resres 4921 . . . . . . 7  |-  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  ( dom  A  i^i  B ) )
4 incom 3329 . . . . . . . 8  |-  ( B  i^i  dom  A )  =  ( dom  A  i^i  B )
54reseq2i 4906 . . . . . . 7  |-  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  ( dom  A  i^i  B ) )
63, 5eqtr4i 2201 . . . . . 6  |-  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  ( B  i^i  dom  A ) )
7 resdm 4948 . . . . . . 7  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
87reseq1d 4908 . . . . . 6  |-  ( Rel 
A  ->  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  B )
)
96, 8eqtr3id 2224 . . . . 5  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)
109rneqd 4858 . . . 4  |-  ( Rel 
A  ->  ran  ( A  |`  ( B  i^i  dom  A ) )  =  ran  ( A  |`  B ) )
11 df-ima 4641 . . . 4  |-  ( A
" ( B  i^i  dom 
A ) )  =  ran  ( A  |`  ( B  i^i  dom  A
) )
12 df-ima 4641 . . . 4  |-  ( A
" B )  =  ran  ( A  |`  B )
1310, 11, 123eqtr4g 2235 . . 3  |-  ( Rel 
A  ->  ( A " ( B  i^i  dom  A ) )  =  ( A " B ) )
141, 2, 133syl 17 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " ( B  i^i  dom 
A ) )  =  ( A " B
) )
15 inex1g 4141 . . 3  |-  ( B  e.  C  ->  ( B  i^i  dom  A )  e.  _V )
16 inss2 3358 . . . 4  |-  ( B  i^i  dom  A )  C_ 
dom  A
17 funimaexglem 5301 . . . 4  |-  ( ( Fun  A  /\  ( B  i^i  dom  A )  e.  _V  /\  ( B  i^i  dom  A )  C_ 
dom  A )  -> 
( A " ( B  i^i  dom  A )
)  e.  _V )
1816, 17mp3an3 1326 . . 3  |-  ( ( Fun  A  /\  ( B  i^i  dom  A )  e.  _V )  ->  ( A " ( B  i^i  dom 
A ) )  e. 
_V )
1915, 18sylan2 286 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " ( B  i^i  dom 
A ) )  e. 
_V )
2014, 19eqeltrrd 2255 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    i^i cin 3130    C_ wss 3131   dom cdm 4628   ran crn 4629    |` cres 4630   "cima 4631   Rel wrel 4633   Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220
This theorem is referenced by:  funimaex  5303  resfunexg  5739  resfunexgALT  6111  fnexALT  6114  suplocexprlem2b  7715  suplocexprlemlub  7725
  Copyright terms: Public domain W3C validator