ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexg Unicode version

Theorem funimaexg 5292
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexg
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  Fun  A )
2 funrel 5225 . . 3  |-  ( Fun 
A  ->  Rel  A )
3 resres 4912 . . . . . . 7  |-  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  ( dom  A  i^i  B ) )
4 incom 3325 . . . . . . . 8  |-  ( B  i^i  dom  A )  =  ( dom  A  i^i  B )
54reseq2i 4897 . . . . . . 7  |-  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  ( dom  A  i^i  B ) )
63, 5eqtr4i 2199 . . . . . 6  |-  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  ( B  i^i  dom  A ) )
7 resdm 4939 . . . . . . 7  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
87reseq1d 4899 . . . . . 6  |-  ( Rel 
A  ->  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  B )
)
96, 8eqtr3id 2222 . . . . 5  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)
109rneqd 4849 . . . 4  |-  ( Rel 
A  ->  ran  ( A  |`  ( B  i^i  dom  A ) )  =  ran  ( A  |`  B ) )
11 df-ima 4633 . . . 4  |-  ( A
" ( B  i^i  dom 
A ) )  =  ran  ( A  |`  ( B  i^i  dom  A
) )
12 df-ima 4633 . . . 4  |-  ( A
" B )  =  ran  ( A  |`  B )
1310, 11, 123eqtr4g 2233 . . 3  |-  ( Rel 
A  ->  ( A " ( B  i^i  dom  A ) )  =  ( A " B ) )
141, 2, 133syl 17 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " ( B  i^i  dom 
A ) )  =  ( A " B
) )
15 inex1g 4134 . . 3  |-  ( B  e.  C  ->  ( B  i^i  dom  A )  e.  _V )
16 inss2 3354 . . . 4  |-  ( B  i^i  dom  A )  C_ 
dom  A
17 funimaexglem 5291 . . . 4  |-  ( ( Fun  A  /\  ( B  i^i  dom  A )  e.  _V  /\  ( B  i^i  dom  A )  C_ 
dom  A )  -> 
( A " ( B  i^i  dom  A )
)  e.  _V )
1816, 17mp3an3 1326 . . 3  |-  ( ( Fun  A  /\  ( B  i^i  dom  A )  e.  _V )  ->  ( A " ( B  i^i  dom 
A ) )  e. 
_V )
1915, 18sylan2 286 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " ( B  i^i  dom 
A ) )  e. 
_V )
2014, 19eqeltrrd 2253 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   _Vcvv 2735    i^i cin 3126    C_ wss 3127   dom cdm 4620   ran crn 4621    |` cres 4622   "cima 4623   Rel wrel 4625   Fun wfun 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-fun 5210
This theorem is referenced by:  funimaex  5293  resfunexg  5729  resfunexgALT  6099  fnexALT  6102  suplocexprlem2b  7688  suplocexprlemlub  7698
  Copyright terms: Public domain W3C validator