ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexg Unicode version

Theorem funimaexg 5338
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexg
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  Fun  A )
2 funrel 5271 . . 3  |-  ( Fun 
A  ->  Rel  A )
3 resres 4954 . . . . . . 7  |-  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  ( dom  A  i^i  B ) )
4 incom 3351 . . . . . . . 8  |-  ( B  i^i  dom  A )  =  ( dom  A  i^i  B )
54reseq2i 4939 . . . . . . 7  |-  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  ( dom  A  i^i  B ) )
63, 5eqtr4i 2217 . . . . . 6  |-  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  ( B  i^i  dom  A ) )
7 resdm 4981 . . . . . . 7  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
87reseq1d 4941 . . . . . 6  |-  ( Rel 
A  ->  ( ( A  |`  dom  A )  |`  B )  =  ( A  |`  B )
)
96, 8eqtr3id 2240 . . . . 5  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)
109rneqd 4891 . . . 4  |-  ( Rel 
A  ->  ran  ( A  |`  ( B  i^i  dom  A ) )  =  ran  ( A  |`  B ) )
11 df-ima 4672 . . . 4  |-  ( A
" ( B  i^i  dom 
A ) )  =  ran  ( A  |`  ( B  i^i  dom  A
) )
12 df-ima 4672 . . . 4  |-  ( A
" B )  =  ran  ( A  |`  B )
1310, 11, 123eqtr4g 2251 . . 3  |-  ( Rel 
A  ->  ( A " ( B  i^i  dom  A ) )  =  ( A " B ) )
141, 2, 133syl 17 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " ( B  i^i  dom 
A ) )  =  ( A " B
) )
15 inex1g 4165 . . 3  |-  ( B  e.  C  ->  ( B  i^i  dom  A )  e.  _V )
16 inss2 3380 . . . 4  |-  ( B  i^i  dom  A )  C_ 
dom  A
17 funimaexglem 5337 . . . 4  |-  ( ( Fun  A  /\  ( B  i^i  dom  A )  e.  _V  /\  ( B  i^i  dom  A )  C_ 
dom  A )  -> 
( A " ( B  i^i  dom  A )
)  e.  _V )
1816, 17mp3an3 1337 . . 3  |-  ( ( Fun  A  /\  ( B  i^i  dom  A )  e.  _V )  ->  ( A " ( B  i^i  dom 
A ) )  e. 
_V )
1915, 18sylan2 286 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " ( B  i^i  dom 
A ) )  e. 
_V )
2014, 19eqeltrrd 2271 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152    C_ wss 3153   dom cdm 4659   ran crn 4660    |` cres 4661   "cima 4662   Rel wrel 4664   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256
This theorem is referenced by:  funimaex  5339  resfunexg  5779  resfunexgALT  6160  fnexALT  6163  suplocexprlem2b  7774  suplocexprlemlub  7784
  Copyright terms: Public domain W3C validator