ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt3 Unicode version

Theorem resmpt3 4957
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
Assertion
Ref Expression
resmpt3  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem resmpt3
StepHypRef Expression
1 resres 4920 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )
2 ssid 3176 . . . 4  |-  A  C_  A
3 resmpt 4956 . . . 4  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
42, 3ax-mp 5 . . 3  |-  ( ( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C )
54reseq1i 4904 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  B )
6 inss1 3356 . . 3  |-  ( A  i^i  B )  C_  A
7 resmpt 4956 . . 3  |-  ( ( A  i^i  B ) 
C_  A  ->  (
( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B
)  |->  C ) )
86, 7ax-mp 5 . 2  |-  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B ) 
|->  C )
91, 5, 83eqtr3i 2206 1  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    i^i cin 3129    C_ wss 3130    |-> cmpt 4065    |` cres 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-opab 4066  df-mpt 4067  df-xp 4633  df-rel 4634  df-res 4639
This theorem is referenced by:  offres  6136
  Copyright terms: Public domain W3C validator