ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt3 Unicode version

Theorem resmpt3 5027
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
Assertion
Ref Expression
resmpt3  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem resmpt3
StepHypRef Expression
1 resres 4990 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )
2 ssid 3221 . . . 4  |-  A  C_  A
3 resmpt 5026 . . . 4  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
42, 3ax-mp 5 . . 3  |-  ( ( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C )
54reseq1i 4974 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  B )
6 inss1 3401 . . 3  |-  ( A  i^i  B )  C_  A
7 resmpt 5026 . . 3  |-  ( ( A  i^i  B ) 
C_  A  ->  (
( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B
)  |->  C ) )
86, 7ax-mp 5 . 2  |-  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B ) 
|->  C )
91, 5, 83eqtr3i 2236 1  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    i^i cin 3173    C_ wss 3174    |-> cmpt 4121    |` cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-mpt 4123  df-xp 4699  df-rel 4700  df-res 4705
This theorem is referenced by:  mptima  5053  offres  6243
  Copyright terms: Public domain W3C validator