ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt3 Unicode version

Theorem resmpt3 4991
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
Assertion
Ref Expression
resmpt3  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem resmpt3
StepHypRef Expression
1 resres 4954 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )
2 ssid 3199 . . . 4  |-  A  C_  A
3 resmpt 4990 . . . 4  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
42, 3ax-mp 5 . . 3  |-  ( ( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C )
54reseq1i 4938 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  B )
6 inss1 3379 . . 3  |-  ( A  i^i  B )  C_  A
7 resmpt 4990 . . 3  |-  ( ( A  i^i  B ) 
C_  A  ->  (
( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B
)  |->  C ) )
86, 7ax-mp 5 . 2  |-  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B ) 
|->  C )
91, 5, 83eqtr3i 2222 1  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    i^i cin 3152    C_ wss 3153    |-> cmpt 4090    |` cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-res 4671
This theorem is referenced by:  mptima  5017  offres  6187
  Copyright terms: Public domain W3C validator