Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resmpt3 | GIF version |
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
Ref | Expression |
---|---|
resmpt3 | ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 4875 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) | |
2 | ssid 3148 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
3 | resmpt 4911 | . . . 4 ⊢ (𝐴 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
5 | 4 | reseq1i 4859 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) |
6 | inss1 3327 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
7 | resmpt 4911 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
9 | 1, 5, 8 | 3eqtr3i 2186 | 1 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∩ cin 3101 ⊆ wss 3102 ↦ cmpt 4025 ↾ cres 4585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4026 df-mpt 4027 df-xp 4589 df-rel 4590 df-res 4595 |
This theorem is referenced by: offres 6077 |
Copyright terms: Public domain | W3C validator |