ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt3 GIF version

Theorem resmpt3 4996
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
Assertion
Ref Expression
resmpt3 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resmpt3
StepHypRef Expression
1 resres 4959 . 2 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥𝐴𝐶) ↾ (𝐴𝐵))
2 ssid 3204 . . . 4 𝐴𝐴
3 resmpt 4995 . . . 4 (𝐴𝐴 → ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
42, 3ax-mp 5 . . 3 ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶)
54reseq1i 4943 . 2 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥𝐴𝐶) ↾ 𝐵)
6 inss1 3384 . . 3 (𝐴𝐵) ⊆ 𝐴
7 resmpt 4995 . . 3 ((𝐴𝐵) ⊆ 𝐴 → ((𝑥𝐴𝐶) ↾ (𝐴𝐵)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶))
86, 7ax-mp 5 . 2 ((𝑥𝐴𝐶) ↾ (𝐴𝐵)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
91, 5, 83eqtr3i 2225 1 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cin 3156  wss 3157  cmpt 4095  cres 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-res 4676
This theorem is referenced by:  mptima  5022  offres  6201
  Copyright terms: Public domain W3C validator