| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resmpt3 | GIF version | ||
| Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| resmpt3 | ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres 4980 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) | |
| 2 | ssid 3217 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | resmpt 5016 | . . . 4 ⊢ (𝐴 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| 5 | 4 | reseq1i 4964 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) |
| 6 | inss1 3397 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 7 | resmpt 5016 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶)) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
| 9 | 1, 5, 8 | 3eqtr3i 2235 | 1 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∩ cin 3169 ⊆ wss 3170 ↦ cmpt 4113 ↾ cres 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4114 df-mpt 4115 df-xp 4689 df-rel 4690 df-res 4695 |
| This theorem is referenced by: mptima 5043 offres 6233 |
| Copyright terms: Public domain | W3C validator |