Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resmpt3 | GIF version |
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
Ref | Expression |
---|---|
resmpt3 | ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 4903 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) | |
2 | ssid 3167 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
3 | resmpt 4939 | . . . 4 ⊢ (𝐴 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
5 | 4 | reseq1i 4887 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) |
6 | inss1 3347 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
7 | resmpt 4939 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
9 | 1, 5, 8 | 3eqtr3i 2199 | 1 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∩ cin 3120 ⊆ wss 3121 ↦ cmpt 4050 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-mpt 4052 df-xp 4617 df-rel 4618 df-res 4623 |
This theorem is referenced by: offres 6114 |
Copyright terms: Public domain | W3C validator |