ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressnop0 Unicode version

Theorem ressnop0 5647
Description: If  A is not in  C, then the restriction of a singleton of  <. A ,  B >. to  C is null. (Contributed by Scott Fenton, 15-Apr-2011.)
Assertion
Ref Expression
ressnop0  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )

Proof of Theorem ressnop0
StepHypRef Expression
1 opelxp1 4619 . . 3  |-  ( <. A ,  B >.  e.  ( C  X.  _V )  ->  A  e.  C
)
21con3i 622 . 2  |-  ( -.  A  e.  C  ->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
3 df-res 4597 . . . 4  |-  ( {
<. A ,  B >. }  |`  C )  =  ( { <. A ,  B >. }  i^i  ( C  X.  _V ) )
4 incom 3299 . . . 4  |-  ( {
<. A ,  B >. }  i^i  ( C  X.  _V ) )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
53, 4eqtri 2178 . . 3  |-  ( {
<. A ,  B >. }  |`  C )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
6 disjsn 3621 . . . 4  |-  ( ( ( C  X.  _V )  i^i  { <. A ,  B >. } )  =  (/) 
<->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
76biimpri 132 . . 3  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( ( C  X.  _V )  i^i 
{ <. A ,  B >. } )  =  (/) )
85, 7syl5eq 2202 . 2  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( { <. A ,  B >. }  |`  C )  =  (/) )
92, 8syl 14 1  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1335    e. wcel 2128   _Vcvv 2712    i^i cin 3101   (/)c0 3394   {csn 3560   <.cop 3563    X. cxp 4583    |` cres 4587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-opab 4026  df-xp 4591  df-res 4597
This theorem is referenced by:  fvunsng  5660  fsnunres  5668
  Copyright terms: Public domain W3C validator