ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressnop0 Unicode version

Theorem ressnop0 5677
Description: If  A is not in  C, then the restriction of a singleton of  <. A ,  B >. to  C is null. (Contributed by Scott Fenton, 15-Apr-2011.)
Assertion
Ref Expression
ressnop0  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )

Proof of Theorem ressnop0
StepHypRef Expression
1 opelxp1 4645 . . 3  |-  ( <. A ,  B >.  e.  ( C  X.  _V )  ->  A  e.  C
)
21con3i 627 . 2  |-  ( -.  A  e.  C  ->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
3 df-res 4623 . . . 4  |-  ( {
<. A ,  B >. }  |`  C )  =  ( { <. A ,  B >. }  i^i  ( C  X.  _V ) )
4 incom 3319 . . . 4  |-  ( {
<. A ,  B >. }  i^i  ( C  X.  _V ) )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
53, 4eqtri 2191 . . 3  |-  ( {
<. A ,  B >. }  |`  C )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
6 disjsn 3645 . . . 4  |-  ( ( ( C  X.  _V )  i^i  { <. A ,  B >. } )  =  (/) 
<->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
76biimpri 132 . . 3  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( ( C  X.  _V )  i^i 
{ <. A ,  B >. } )  =  (/) )
85, 7eqtrid 2215 . 2  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( { <. A ,  B >. }  |`  C )  =  (/) )
92, 8syl 14 1  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    i^i cin 3120   (/)c0 3414   {csn 3583   <.cop 3586    X. cxp 4609    |` cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617  df-res 4623
This theorem is referenced by:  fvunsng  5690  fsnunres  5698
  Copyright terms: Public domain W3C validator