![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressnop0 | GIF version |
Description: If 𝐴 is not in 𝐶, then the restriction of a singleton of 〈𝐴, 𝐵〉 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.) |
Ref | Expression |
---|---|
ressnop0 | ⊢ (¬ 𝐴 ∈ 𝐶 → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp1 4693 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × V) → 𝐴 ∈ 𝐶) | |
2 | 1 | con3i 633 | . 2 ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V)) |
3 | df-res 4671 | . . . 4 ⊢ ({〈𝐴, 𝐵〉} ↾ 𝐶) = ({〈𝐴, 𝐵〉} ∩ (𝐶 × V)) | |
4 | incom 3351 | . . . 4 ⊢ ({〈𝐴, 𝐵〉} ∩ (𝐶 × V)) = ((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) | |
5 | 3, 4 | eqtri 2214 | . . 3 ⊢ ({〈𝐴, 𝐵〉} ↾ 𝐶) = ((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) |
6 | disjsn 3680 | . . . 4 ⊢ (((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) = ∅ ↔ ¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V)) | |
7 | 6 | biimpri 133 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V) → ((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) = ∅) |
8 | 5, 7 | eqtrid 2238 | . 2 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V) → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
9 | 2, 8 | syl 14 | 1 ⊢ (¬ 𝐴 ∈ 𝐶 → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3152 ∅c0 3446 {csn 3618 〈cop 3621 × cxp 4657 ↾ cres 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-xp 4665 df-res 4671 |
This theorem is referenced by: fvunsng 5752 fsnunres 5760 |
Copyright terms: Public domain | W3C validator |