![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressnop0 | GIF version |
Description: If 𝐴 is not in 𝐶, then the restriction of a singleton of ⟨𝐴, 𝐵⟩ to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.) |
Ref | Expression |
---|---|
ressnop0 | ⊢ (¬ 𝐴 ∈ 𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp1 4662 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → 𝐴 ∈ 𝐶) | |
2 | 1 | con3i 632 | . 2 ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V)) |
3 | df-res 4640 | . . . 4 ⊢ ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V)) | |
4 | incom 3329 | . . . 4 ⊢ ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V)) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) | |
5 | 3, 4 | eqtri 2198 | . . 3 ⊢ ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) |
6 | disjsn 3656 | . . . 4 ⊢ (((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V)) | |
7 | 6 | biimpri 133 | . . 3 ⊢ (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅) |
8 | 5, 7 | eqtrid 2222 | . 2 ⊢ (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅) |
9 | 2, 8 | syl 14 | 1 ⊢ (¬ 𝐴 ∈ 𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∩ cin 3130 ∅c0 3424 {csn 3594 ⟨cop 3597 × cxp 4626 ↾ cres 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-xp 4634 df-res 4640 |
This theorem is referenced by: fvunsng 5712 fsnunres 5720 |
Copyright terms: Public domain | W3C validator |