ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnasrng Unicode version

Theorem fnasrng 5593
Description: A function expressed as the range of another function. (Contributed by Jim Kingdon, 9-Jan-2019.)
Assertion
Ref Expression
fnasrng  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. ) )

Proof of Theorem fnasrng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfmptg 5592 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. } )
2 eqid 2137 . . . . 5  |-  ( x  e.  A  |->  <. x ,  B >. )  =  ( x  e.  A  |->  <.
x ,  B >. )
32rnmpt 4782 . . . 4  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
4 velsn 3539 . . . . . 6  |-  ( y  e.  { <. x ,  B >. }  <->  y  =  <. x ,  B >. )
54rexbii 2440 . . . . 5  |-  ( E. x  e.  A  y  e.  { <. x ,  B >. }  <->  E. x  e.  A  y  =  <. x ,  B >. )
65abbii 2253 . . . 4  |-  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
73, 6eqtr4i 2161 . . 3  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }
8 df-iun 3810 . . 3  |-  U_ x  e.  A  { <. x ,  B >. }  =  {
y  |  E. x  e.  A  y  e.  {
<. x ,  B >. } }
97, 8eqtr4i 2161 . 2  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  U_ x  e.  A  { <. x ,  B >. }
101, 9syl6eqr 2188 1  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   {cab 2123   A.wral 2414   E.wrex 2415   {csn 3522   <.cop 3525   U_ciun 3808    |-> cmpt 3984   ran crn 4535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125
This theorem is referenced by:  resfunexg  5634
  Copyright terms: Public domain W3C validator