ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnasrng Unicode version

Theorem fnasrng 5688
Description: A function expressed as the range of another function. (Contributed by Jim Kingdon, 9-Jan-2019.)
Assertion
Ref Expression
fnasrng  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. ) )

Proof of Theorem fnasrng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfmptg 5687 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. } )
2 eqid 2175 . . . . 5  |-  ( x  e.  A  |->  <. x ,  B >. )  =  ( x  e.  A  |->  <.
x ,  B >. )
32rnmpt 4868 . . . 4  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
4 velsn 3606 . . . . . 6  |-  ( y  e.  { <. x ,  B >. }  <->  y  =  <. x ,  B >. )
54rexbii 2482 . . . . 5  |-  ( E. x  e.  A  y  e.  { <. x ,  B >. }  <->  E. x  e.  A  y  =  <. x ,  B >. )
65abbii 2291 . . . 4  |-  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
73, 6eqtr4i 2199 . . 3  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }
8 df-iun 3884 . . 3  |-  U_ x  e.  A  { <. x ,  B >. }  =  {
y  |  E. x  e.  A  y  e.  {
<. x ,  B >. } }
97, 8eqtr4i 2199 . 2  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  U_ x  e.  A  { <. x ,  B >. }
101, 9eqtr4di 2226 1  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   {cab 2161   A.wral 2453   E.wrex 2454   {csn 3589   <.cop 3592   U_ciun 3882    |-> cmpt 4059   ran crn 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215
This theorem is referenced by:  resfunexg  5729
  Copyright terms: Public domain W3C validator