ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemlol Unicode version

Theorem ltexprlemlol 7662
Description: The lower cut of our constructed difference is lower. Lemma for ltexpri 7673. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemlol  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( E. r  e. 
Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) )  ->  q  e.  ( 1st `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemlol
StepHypRef Expression
1 simplr 528 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  q  e.  Q. )
2 simprrr 540 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) )
32simpld 112 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  y  e.  ( 2nd `  A ) )
4 simprl 529 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  q  <Q  r
)
5 simpll 527 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  A  <P  B )
6 ltrelpr 7565 . . . . . . . . . . . 12  |-  <P  C_  ( P.  X.  P. )
76brel 4711 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
87simpld 112 . . . . . . . . . 10  |-  ( A 
<P  B  ->  A  e. 
P. )
9 prop 7535 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
10 elprnqu 7542 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
119, 10sylan 283 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
128, 11sylan 283 . . . . . . . . 9  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
135, 3, 12syl2anc 411 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  y  e.  Q. )
14 ltanqi 7462 . . . . . . . 8  |-  ( ( q  <Q  r  /\  y  e.  Q. )  ->  ( y  +Q  q
)  <Q  ( y  +Q  r ) )
154, 13, 14syl2anc 411 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
167simprd 114 . . . . . . . . 9  |-  ( A 
<P  B  ->  B  e. 
P. )
175, 16syl 14 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  B  e.  P. )
182simprd 114 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  ( y  +Q  r )  e.  ( 1st `  B ) )
19 prop 7535 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
20 prcdnql 7544 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  r
)  e.  ( 1st `  B ) )  -> 
( ( y  +Q  q )  <Q  (
y  +Q  r )  ->  ( y  +Q  q )  e.  ( 1st `  B ) ) )
2119, 20sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  ( y  +Q  r
)  e.  ( 1st `  B ) )  -> 
( ( y  +Q  q )  <Q  (
y  +Q  r )  ->  ( y  +Q  q )  e.  ( 1st `  B ) ) )
2217, 18, 21syl2anc 411 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  ( ( y  +Q  q )  <Q 
( y  +Q  r
)  ->  ( y  +Q  q )  e.  ( 1st `  B ) ) )
2315, 22mpd 13 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  ( y  +Q  q )  e.  ( 1st `  B ) )
241, 3, 23jca32 310 . . . . 5  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
2524eximi 1611 . . . 4  |-  ( E. y ( ( A 
<P  B  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  (
r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  ->  E. y ( q  e.  Q.  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) )
26 ltexprlem.1 . . . . . . . . . 10  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
2726ltexprlemell 7658 . . . . . . . . 9  |-  ( r  e.  ( 1st `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )
28 19.42v 1918 . . . . . . . . 9  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )
2927, 28bitr4i 187 . . . . . . . 8  |-  ( r  e.  ( 1st `  C
)  <->  E. y ( r  e.  Q.  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  r )  e.  ( 1st `  B
) ) ) )
3029anbi2i 457 . . . . . . 7  |-  ( ( q  <Q  r  /\  r  e.  ( 1st `  C ) )  <->  ( q  <Q  r  /\  E. y
( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
31 19.42v 1918 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
3230, 31bitr4i 187 . . . . . 6  |-  ( ( q  <Q  r  /\  r  e.  ( 1st `  C ) )  <->  E. y
( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
3332anbi2i 457 . . . . 5  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )  <->  ( ( A 
<P  B  /\  q  e.  Q. )  /\  E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) ) )
34 19.42v 1918 . . . . 5  |-  ( E. y ( ( A 
<P  B  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  (
r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )  <-> 
( ( A  <P  B  /\  q  e.  Q. )  /\  E. y ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) ) )
3533, 34bitr4i 187 . . . 4  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )  <->  E. y ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) ) )
3626ltexprlemell 7658 . . . . 5  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
37 19.42v 1918 . . . . 5  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
3836, 37bitr4i 187 . . . 4  |-  ( q  e.  ( 1st `  C
)  <->  E. y ( q  e.  Q.  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) )
3925, 35, 383imtr4i 201 . . 3  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )  ->  q  e.  ( 1st `  C ) )
4039ex 115 . 2  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( ( q  <Q 
r  /\  r  e.  ( 1st `  C ) )  ->  q  e.  ( 1st `  C ) ) )
4140rexlimdvw 2615 1  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( E. r  e. 
Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) )  ->  q  e.  ( 1st `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   {crab 2476   <.cop 3621   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    +Q cplq 7342    <Q cltq 7345   P.cnp 7351    <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-ltnqqs 7413  df-inp 7526  df-iltp 7530
This theorem is referenced by:  ltexprlemrnd  7665
  Copyright terms: Public domain W3C validator