| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemss | Unicode version | ||
| Description: Lemma for suplocexpr 7838. |
| Ref | Expression |
|---|---|
| suplocexpr.m |
|
| suplocexpr.ub |
|
| suplocexpr.loc |
|
| Ref | Expression |
|---|---|
| suplocexprlemss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexpr.ub |
. . 3
| |
| 2 | rsp 2553 |
. . . . . 6
| |
| 3 | ltrelpr 7618 |
. . . . . . . 8
| |
| 4 | 3 | brel 4727 |
. . . . . . 7
|
| 5 | 4 | simpld 112 |
. . . . . 6
|
| 6 | 2, 5 | syl6 33 |
. . . . 5
|
| 7 | 6 | a1i 9 |
. . . 4
|
| 8 | 7 | rexlimdvw 2627 |
. . 3
|
| 9 | 1, 8 | mpd 13 |
. 2
|
| 10 | 9 | ssrdv 3199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-iltp 7583 |
| This theorem is referenced by: suplocexprlemml 7829 suplocexprlemrl 7830 suplocexprlemmu 7831 suplocexprlemru 7832 suplocexprlemdisj 7833 suplocexprlemloc 7834 suplocexprlemex 7835 suplocexprlemub 7836 suplocexprlemlub 7837 |
| Copyright terms: Public domain | W3C validator |