| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemss | Unicode version | ||
| Description: Lemma for suplocexpr 7908. |
| Ref | Expression |
|---|---|
| suplocexpr.m |
|
| suplocexpr.ub |
|
| suplocexpr.loc |
|
| Ref | Expression |
|---|---|
| suplocexprlemss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexpr.ub |
. . 3
| |
| 2 | rsp 2577 |
. . . . . 6
| |
| 3 | ltrelpr 7688 |
. . . . . . . 8
| |
| 4 | 3 | brel 4770 |
. . . . . . 7
|
| 5 | 4 | simpld 112 |
. . . . . 6
|
| 6 | 2, 5 | syl6 33 |
. . . . 5
|
| 7 | 6 | a1i 9 |
. . . 4
|
| 8 | 7 | rexlimdvw 2652 |
. . 3
|
| 9 | 1, 8 | mpd 13 |
. 2
|
| 10 | 9 | ssrdv 3230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-iltp 7653 |
| This theorem is referenced by: suplocexprlemml 7899 suplocexprlemrl 7900 suplocexprlemmu 7901 suplocexprlemru 7902 suplocexprlemdisj 7903 suplocexprlemloc 7904 suplocexprlemex 7905 suplocexprlemub 7906 suplocexprlemlub 7907 |
| Copyright terms: Public domain | W3C validator |