ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemss Unicode version

Theorem suplocexprlemss 7827
Description: Lemma for suplocexpr 7837. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexprlemss  |-  ( ph  ->  A  C_  P. )
Distinct variable groups:    x, A, y    ph, x, y
Allowed substitution hints:    ph( z)    A( z)

Proof of Theorem suplocexprlemss
StepHypRef Expression
1 suplocexpr.ub . . 3  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
2 rsp 2552 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  ( y  e.  A  ->  y  <P  x ) )
3 ltrelpr 7617 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
43brel 4726 . . . . . . 7  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
54simpld 112 . . . . . 6  |-  ( y 
<P  x  ->  y  e. 
P. )
62, 5syl6 33 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  ( y  e.  A  ->  y  e. 
P. ) )
76a1i 9 . . . 4  |-  ( ph  ->  ( A. y  e.  A  y  <P  x  ->  ( y  e.  A  ->  y  e.  P. )
) )
87rexlimdvw 2626 . . 3  |-  ( ph  ->  ( E. x  e. 
P.  A. y  e.  A  y  <P  x  ->  (
y  e.  A  -> 
y  e.  P. )
) )
91, 8mpd 13 . 2  |-  ( ph  ->  ( y  e.  A  ->  y  e.  P. )
)
109ssrdv 3198 1  |-  ( ph  ->  A  C_  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709   E.wex 1514    e. wcel 2175   A.wral 2483   E.wrex 2484    C_ wss 3165   class class class wbr 4043   P.cnp 7403    <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-iltp 7582
This theorem is referenced by:  suplocexprlemml  7828  suplocexprlemrl  7829  suplocexprlemmu  7830  suplocexprlemru  7831  suplocexprlemdisj  7832  suplocexprlemloc  7833  suplocexprlemex  7834  suplocexprlemub  7835  suplocexprlemlub  7836
  Copyright terms: Public domain W3C validator