ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemss Unicode version

Theorem suplocexprlemss 7656
Description: Lemma for suplocexpr 7666. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexprlemss  |-  ( ph  ->  A  C_  P. )
Distinct variable groups:    x, A, y    ph, x, y
Allowed substitution hints:    ph( z)    A( z)

Proof of Theorem suplocexprlemss
StepHypRef Expression
1 suplocexpr.ub . . 3  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
2 rsp 2513 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  ( y  e.  A  ->  y  <P  x ) )
3 ltrelpr 7446 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
43brel 4656 . . . . . . 7  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
54simpld 111 . . . . . 6  |-  ( y 
<P  x  ->  y  e. 
P. )
62, 5syl6 33 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  ( y  e.  A  ->  y  e. 
P. ) )
76a1i 9 . . . 4  |-  ( ph  ->  ( A. y  e.  A  y  <P  x  ->  ( y  e.  A  ->  y  e.  P. )
) )
87rexlimdvw 2587 . . 3  |-  ( ph  ->  ( E. x  e. 
P.  A. y  e.  A  y  <P  x  ->  (
y  e.  A  -> 
y  e.  P. )
) )
91, 8mpd 13 . 2  |-  ( ph  ->  ( y  e.  A  ->  y  e.  P. )
)
109ssrdv 3148 1  |-  ( ph  ->  A  C_  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   class class class wbr 3982   P.cnp 7232    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-iltp 7411
This theorem is referenced by:  suplocexprlemml  7657  suplocexprlemrl  7658  suplocexprlemmu  7659  suplocexprlemru  7660  suplocexprlemdisj  7661  suplocexprlemloc  7662  suplocexprlemex  7663  suplocexprlemub  7664  suplocexprlemlub  7665
  Copyright terms: Public domain W3C validator