ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemss Unicode version

Theorem suplocexprlemss 7775
Description: Lemma for suplocexpr 7785. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexprlemss  |-  ( ph  ->  A  C_  P. )
Distinct variable groups:    x, A, y    ph, x, y
Allowed substitution hints:    ph( z)    A( z)

Proof of Theorem suplocexprlemss
StepHypRef Expression
1 suplocexpr.ub . . 3  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
2 rsp 2541 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  ( y  e.  A  ->  y  <P  x ) )
3 ltrelpr 7565 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
43brel 4711 . . . . . . 7  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
54simpld 112 . . . . . 6  |-  ( y 
<P  x  ->  y  e. 
P. )
62, 5syl6 33 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  ( y  e.  A  ->  y  e. 
P. ) )
76a1i 9 . . . 4  |-  ( ph  ->  ( A. y  e.  A  y  <P  x  ->  ( y  e.  A  ->  y  e.  P. )
) )
87rexlimdvw 2615 . . 3  |-  ( ph  ->  ( E. x  e. 
P.  A. y  e.  A  y  <P  x  ->  (
y  e.  A  -> 
y  e.  P. )
) )
91, 8mpd 13 . 2  |-  ( ph  ->  ( y  e.  A  ->  y  e.  P. )
)
109ssrdv 3185 1  |-  ( ph  ->  A  C_  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   class class class wbr 4029   P.cnp 7351    <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-iltp 7530
This theorem is referenced by:  suplocexprlemml  7776  suplocexprlemrl  7777  suplocexprlemmu  7778  suplocexprlemru  7779  suplocexprlemdisj  7780  suplocexprlemloc  7781  suplocexprlemex  7782  suplocexprlemub  7783  suplocexprlemlub  7784
  Copyright terms: Public domain W3C validator