ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnel Unicode version

Theorem lspsnel 13694
Description: Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f  |-  F  =  (Scalar `  W )
lspsn.k  |-  K  =  ( Base `  F
)
lspsn.v  |-  V  =  ( Base `  W
)
lspsn.t  |-  .x.  =  ( .s `  W )
lspsn.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnel  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <->  E. k  e.  K  U  =  ( k  .x.  X ) ) )
Distinct variable groups:    k, F    k, K    k, N    U, k    k, V    k, W    .x. , k    k, X

Proof of Theorem lspsnel
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lspsn.f . . . 4  |-  F  =  (Scalar `  W )
2 lspsn.k . . . 4  |-  K  =  ( Base `  F
)
3 lspsn.v . . . 4  |-  V  =  ( Base `  W
)
4 lspsn.t . . . 4  |-  .x.  =  ( .s `  W )
5 lspsn.n . . . 4  |-  N  =  ( LSpan `  W )
61, 2, 3, 4, 5lspsn 13693 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
76eleq2d 2259 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <-> 
U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )
8 simpr 110 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  U  =  ( k  .x.  X ) )  ->  U  =  ( k  .x.  X
) )
9 vex 2755 . . . . . . . 8  |-  k  e. 
_V
10 vscaslid 12640 . . . . . . . . . 10  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
1110slotex 12507 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( .s
`  W )  e. 
_V )
124, 11eqeltrid 2276 . . . . . . . 8  |-  ( W  e.  LMod  ->  .x.  e.  _V )
13 simpr 110 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
14 ovexg 5925 . . . . . . . 8  |-  ( ( k  e.  _V  /\  .x. 
e.  _V  /\  X  e.  V )  ->  (
k  .x.  X )  e.  _V )
159, 12, 13, 14mp3an2ani 1355 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
k  .x.  X )  e.  _V )
1615adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  U  =  ( k  .x.  X ) )  ->  ( k  .x.  X )  e.  _V )
178, 16eqeltrd 2266 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  U  =  ( k  .x.  X ) )  ->  U  e.  _V )
1817ex 115 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  =  ( k  .x.  X )  ->  U  e.  _V ) )
1918rexlimdvw 2611 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  U  =  ( k  .x.  X )  ->  U  e.  _V ) )
20 eqeq1 2196 . . . . 5  |-  ( v  =  U  ->  (
v  =  ( k 
.x.  X )  <->  U  =  ( k  .x.  X
) ) )
2120rexbidv 2491 . . . 4  |-  ( v  =  U  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  U  =  ( k  .x.  X
) ) )
2221elab3g 2903 . . 3  |-  ( ( E. k  e.  K  U  =  ( k  .x.  X )  ->  U  e.  _V )  ->  ( U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  U  =  ( k  .x.  X
) ) )
2319, 22syl 14 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  U  =  ( k  .x.  X
) ) )
247, 23bitrd 188 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <->  E. k  e.  K  U  =  ( k  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175   E.wrex 2469   _Vcvv 2752   {csn 3607   ` cfv 5231  (class class class)co 5891   Basecbs 12480  Scalarcsca 12558   .scvsca 12559   LModclmod 13564   LSpanclspn 13663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-pre-ltirr 7941  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-pnf 8012  df-mnf 8013  df-ltxr 8015  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-5 8999  df-6 9000  df-ndx 12483  df-slot 12484  df-base 12486  df-sets 12487  df-plusg 12568  df-mulr 12569  df-sca 12571  df-vsca 12572  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-minusg 12915  df-sbg 12916  df-mgp 13236  df-ur 13275  df-ring 13313  df-lmod 13566  df-lssm 13630  df-lsp 13664
This theorem is referenced by:  lspsnss2  13696
  Copyright terms: Public domain W3C validator