ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemrnd Unicode version

Theorem caucvgprprlemrnd 7834
Description: Lemma for caucvgprpr 7845. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemrnd  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) )  /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
Distinct variable groups:    A, m    m, F    F, l, t    u, F, t, r, s    L, s, t    p, l, q, r, s, t    u, p, q, r, s    ph, r,
s, t
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, t, k, n, s, r, q, p, l)    F( k, n, q, p)    L( u, k, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemrnd
StepHypRef Expression
1 caucvgprpr.f . . . . . 6  |-  ( ph  ->  F : N. --> P. )
2 caucvgprpr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
3 caucvgprpr.bnd . . . . . 6  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
4 caucvgprpr.lim . . . . . 6  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
51, 2, 3, 4caucvgprprlemopl 7830 . . . . 5  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. t  e.  Q.  ( s  <Q 
t  /\  t  e.  ( 1st `  L ) ) )
65ex 115 . . . 4  |-  ( ph  ->  ( s  e.  ( 1st `  L )  ->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) )
71, 2, 3, 4caucvgprprlemlol 7831 . . . . . 6  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
873expib 1209 . . . . 5  |-  ( ph  ->  ( ( s  <Q 
t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) ) )
98rexlimdvw 2628 . . . 4  |-  ( ph  ->  ( E. t  e. 
Q.  ( s  <Q 
t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) ) )
106, 9impbid 129 . . 3  |-  ( ph  ->  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) )
1110ralrimivw 2581 . 2  |-  ( ph  ->  A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) )
121, 2, 3, 4caucvgprprlemopu 7832 . . . . 5  |-  ( (
ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) )
1312ex 115 . . . 4  |-  ( ph  ->  ( t  e.  ( 2nd `  L )  ->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) )
141, 2, 3, 4caucvgprprlemupu 7833 . . . . . 6  |-  ( (
ph  /\  s  <Q  t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) )
15143expib 1209 . . . . 5  |-  ( ph  ->  ( ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) ) )
1615rexlimdvw 2628 . . . 4  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) ) )
1713, 16impbid 129 . . 3  |-  ( ph  ->  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) )
1817ralrimivw 2581 . 2  |-  ( ph  ->  A. t  e.  Q.  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) )
1911, 18jca 306 1  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) )  /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   {cab 2192   A.wral 2485   E.wrex 2486   {crab 2489   <.cop 3641   class class class wbr 4051   -->wf 5276   ` cfv 5280  (class class class)co 5957   1stc1st 6237   2ndc2nd 6238   1oc1o 6508   [cec 6631   N.cnpi 7405    <N clti 7408    ~Q ceq 7412   Q.cnq 7413    +Q cplq 7415   *Qcrq 7417    <Q cltq 7418   P.cnp 7424    +P. cpp 7426    <P cltp 7428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-1nqqs 7484  df-rq 7485  df-ltnqqs 7486  df-enq0 7557  df-nq0 7558  df-0nq0 7559  df-plq0 7560  df-mq0 7561  df-inp 7599  df-iplp 7601  df-iltp 7603
This theorem is referenced by:  caucvgprprlemcl  7837
  Copyright terms: Public domain W3C validator