ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemrnd Unicode version

Theorem caucvgprprlemrnd 7884
Description: Lemma for caucvgprpr 7895. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemrnd  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) )  /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
Distinct variable groups:    A, m    m, F    F, l, t    u, F, t, r, s    L, s, t    p, l, q, r, s, t    u, p, q, r, s    ph, r,
s, t
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, t, k, n, s, r, q, p, l)    F( k, n, q, p)    L( u, k, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemrnd
StepHypRef Expression
1 caucvgprpr.f . . . . . 6  |-  ( ph  ->  F : N. --> P. )
2 caucvgprpr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
3 caucvgprpr.bnd . . . . . 6  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
4 caucvgprpr.lim . . . . . 6  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
51, 2, 3, 4caucvgprprlemopl 7880 . . . . 5  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. t  e.  Q.  ( s  <Q 
t  /\  t  e.  ( 1st `  L ) ) )
65ex 115 . . . 4  |-  ( ph  ->  ( s  e.  ( 1st `  L )  ->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) )
71, 2, 3, 4caucvgprprlemlol 7881 . . . . . 6  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
873expib 1230 . . . . 5  |-  ( ph  ->  ( ( s  <Q 
t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) ) )
98rexlimdvw 2652 . . . 4  |-  ( ph  ->  ( E. t  e. 
Q.  ( s  <Q 
t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) ) )
106, 9impbid 129 . . 3  |-  ( ph  ->  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) )
1110ralrimivw 2604 . 2  |-  ( ph  ->  A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) )
121, 2, 3, 4caucvgprprlemopu 7882 . . . . 5  |-  ( (
ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) )
1312ex 115 . . . 4  |-  ( ph  ->  ( t  e.  ( 2nd `  L )  ->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) )
141, 2, 3, 4caucvgprprlemupu 7883 . . . . . 6  |-  ( (
ph  /\  s  <Q  t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) )
15143expib 1230 . . . . 5  |-  ( ph  ->  ( ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) ) )
1615rexlimdvw 2652 . . . 4  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) ) )
1713, 16impbid 129 . . 3  |-  ( ph  ->  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) )
1817ralrimivw 2604 . 2  |-  ( ph  ->  A. t  e.  Q.  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) )
1911, 18jca 306 1  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) )  /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   {crab 2512   <.cop 3669   class class class wbr 4082   -->wf 5313   ` cfv 5317  (class class class)co 6000   1stc1st 6282   2ndc2nd 6283   1oc1o 6553   [cec 6676   N.cnpi 7455    <N clti 7458    ~Q ceq 7462   Q.cnq 7463    +Q cplq 7465   *Qcrq 7467    <Q cltq 7468   P.cnp 7474    +P. cpp 7476    <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iplp 7651  df-iltp 7653
This theorem is referenced by:  caucvgprprlemcl  7887
  Copyright terms: Public domain W3C validator