ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemrnd Unicode version

Theorem caucvgprprlemrnd 7717
Description: Lemma for caucvgprpr 7728. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemrnd  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) )  /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
Distinct variable groups:    A, m    m, F    F, l, t    u, F, t, r, s    L, s, t    p, l, q, r, s, t    u, p, q, r, s    ph, r,
s, t
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, t, k, n, s, r, q, p, l)    F( k, n, q, p)    L( u, k, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemrnd
StepHypRef Expression
1 caucvgprpr.f . . . . . 6  |-  ( ph  ->  F : N. --> P. )
2 caucvgprpr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
3 caucvgprpr.bnd . . . . . 6  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
4 caucvgprpr.lim . . . . . 6  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
51, 2, 3, 4caucvgprprlemopl 7713 . . . . 5  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. t  e.  Q.  ( s  <Q 
t  /\  t  e.  ( 1st `  L ) ) )
65ex 115 . . . 4  |-  ( ph  ->  ( s  e.  ( 1st `  L )  ->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) )
71, 2, 3, 4caucvgprprlemlol 7714 . . . . . 6  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
873expib 1207 . . . . 5  |-  ( ph  ->  ( ( s  <Q 
t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) ) )
98rexlimdvw 2610 . . . 4  |-  ( ph  ->  ( E. t  e. 
Q.  ( s  <Q 
t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) ) )
106, 9impbid 129 . . 3  |-  ( ph  ->  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) )
1110ralrimivw 2563 . 2  |-  ( ph  ->  A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) )
121, 2, 3, 4caucvgprprlemopu 7715 . . . . 5  |-  ( (
ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) )
1312ex 115 . . . 4  |-  ( ph  ->  ( t  e.  ( 2nd `  L )  ->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) )
141, 2, 3, 4caucvgprprlemupu 7716 . . . . . 6  |-  ( (
ph  /\  s  <Q  t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) )
15143expib 1207 . . . . 5  |-  ( ph  ->  ( ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) ) )
1615rexlimdvw 2610 . . . 4  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) ) )
1713, 16impbid 129 . . 3  |-  ( ph  ->  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) )
1817ralrimivw 2563 . 2  |-  ( ph  ->  A. t  e.  Q.  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) )
1911, 18jca 306 1  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) )  /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2159   {cab 2174   A.wral 2467   E.wrex 2468   {crab 2471   <.cop 3609   class class class wbr 4017   -->wf 5226   ` cfv 5230  (class class class)co 5890   1stc1st 6156   2ndc2nd 6157   1oc1o 6427   [cec 6550   N.cnpi 7288    <N clti 7291    ~Q ceq 7295   Q.cnq 7296    +Q cplq 7298   *Qcrq 7300    <Q cltq 7301   P.cnp 7307    +P. cpp 7309    <P cltp 7311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-eprel 4303  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-irdg 6388  df-1o 6434  df-2o 6435  df-oadd 6438  df-omul 6439  df-er 6552  df-ec 6554  df-qs 6558  df-ni 7320  df-pli 7321  df-mi 7322  df-lti 7323  df-plpq 7360  df-mpq 7361  df-enq 7363  df-nqqs 7364  df-plqqs 7365  df-mqqs 7366  df-1nqqs 7367  df-rq 7368  df-ltnqqs 7369  df-enq0 7440  df-nq0 7441  df-0nq0 7442  df-plq0 7443  df-mq0 7444  df-inp 7482  df-iplp 7484  df-iltp 7486
This theorem is referenced by:  caucvgprprlemcl  7720
  Copyright terms: Public domain W3C validator