ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemupu Unicode version

Theorem ltexprlemupu 7791
Description: The upper cut of our constructed difference is upper. Lemma for ltexpri 7800. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemupu  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemupu
StepHypRef Expression
1 simplr 528 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  r  e.  Q. )
2 simprrr 540 . . . . . . 7  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )
32simpld 112 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  y  e.  ( 1st `  A ) )
4 simprl 529 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  q  <Q  r
)
5 simpll 527 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  A  <P  B )
6 simprrl 539 . . . . . . . . . 10  |-  ( ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
y  e.  ( 1st `  A ) )
76adantl 277 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  y  e.  ( 1st `  A ) )
8 ltrelpr 7692 . . . . . . . . . . . . 13  |-  <P  C_  ( P.  X.  P. )
98brel 4771 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
109simpld 112 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  A  e. 
P. )
11 prop 7662 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1210, 11syl 14 . . . . . . . . . 10  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 elprnql 7668 . . . . . . . . . 10  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
1412, 13sylan 283 . . . . . . . . 9  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
155, 7, 14syl2anc 411 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  y  e.  Q. )
16 ltanqi 7589 . . . . . . . 8  |-  ( ( q  <Q  r  /\  y  e.  Q. )  ->  ( y  +Q  q
)  <Q  ( y  +Q  r ) )
174, 15, 16syl2anc 411 . . . . . . 7  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
189simprd 114 . . . . . . . . 9  |-  ( A 
<P  B  ->  B  e. 
P. )
195, 18syl 14 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  B  e.  P. )
202simprd 114 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  +Q  q )  e.  ( 2nd `  B ) )
21 prop 7662 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
22 prcunqu 7672 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  q )  <Q  (
y  +Q  r )  ->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
2321, 22sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  ( y  +Q  q
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  q )  <Q  (
y  +Q  r )  ->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
2419, 20, 23syl2anc 411 . . . . . . 7  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( ( y  +Q  q )  <Q 
( y  +Q  r
)  ->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
2517, 24mpd 13 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  +Q  r )  e.  ( 2nd `  B ) )
261, 3, 25jca32 310 . . . . 5  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
2726eximi 1646 . . . 4  |-  ( E. y ( ( A 
<P  B  /\  r  e.  Q. )  /\  (
q  <Q  r  /\  (
q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  E. y ( r  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) ) )
28 ltexprlem.1 . . . . . . . . . 10  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
2928ltexprlemelu 7786 . . . . . . . . 9  |-  ( q  e.  ( 2nd `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
30 19.42v 1953 . . . . . . . . 9  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
3129, 30bitr4i 187 . . . . . . . 8  |-  ( q  e.  ( 2nd `  C
)  <->  E. y ( q  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  q )  e.  ( 2nd `  B
) ) ) )
3231anbi2i 457 . . . . . . 7  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
33 19.42v 1953 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
3432, 33bitr4i 187 . . . . . 6  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  E. y
( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
3534anbi2i 457 . . . . 5  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )  <->  ( ( A 
<P  B  /\  r  e.  Q. )  /\  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
36 19.42v 1953 . . . . 5  |-  ( E. y ( ( A 
<P  B  /\  r  e.  Q. )  /\  (
q  <Q  r  /\  (
q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  <-> 
( ( A  <P  B  /\  r  e.  Q. )  /\  E. y ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
3735, 36bitr4i 187 . . . 4  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )  <->  E. y ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
3828ltexprlemelu 7786 . . . . 5  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
39 19.42v 1953 . . . . 5  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
4038, 39bitr4i 187 . . . 4  |-  ( r  e.  ( 2nd `  C
)  <->  E. y ( r  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) ) )
4127, 37, 403imtr4i 201 . . 3  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )  ->  r  e.  ( 2nd `  C ) )
4241ex 115 . 2  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
4342rexlimdvw 2652 1  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   {crab 2512   <.cop 3669   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467    +Q cplq 7469    <Q cltq 7472   P.cnp 7478    <P cltp 7482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-ltnqqs 7540  df-inp 7653  df-iltp 7657
This theorem is referenced by:  ltexprlemrnd  7792
  Copyright terms: Public domain W3C validator