ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemupu Unicode version

Theorem ltexprlemupu 7313
Description: The upper cut of our constructed difference is upper. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemupu  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemupu
StepHypRef Expression
1 simplr 500 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  r  e.  Q. )
2 simprrr 510 . . . . . . 7  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )
32simpld 111 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  y  e.  ( 1st `  A ) )
4 simprl 501 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  q  <Q  r
)
5 simpll 499 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  A  <P  B )
6 simprrl 509 . . . . . . . . . 10  |-  ( ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
y  e.  ( 1st `  A ) )
76adantl 273 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  y  e.  ( 1st `  A ) )
8 ltrelpr 7214 . . . . . . . . . . . . 13  |-  <P  C_  ( P.  X.  P. )
98brel 4529 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
109simpld 111 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  A  e. 
P. )
11 prop 7184 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1210, 11syl 14 . . . . . . . . . 10  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 elprnql 7190 . . . . . . . . . 10  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
1412, 13sylan 279 . . . . . . . . 9  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
155, 7, 14syl2anc 406 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  y  e.  Q. )
16 ltanqi 7111 . . . . . . . 8  |-  ( ( q  <Q  r  /\  y  e.  Q. )  ->  ( y  +Q  q
)  <Q  ( y  +Q  r ) )
174, 15, 16syl2anc 406 . . . . . . 7  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
189simprd 113 . . . . . . . . 9  |-  ( A 
<P  B  ->  B  e. 
P. )
195, 18syl 14 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  B  e.  P. )
202simprd 113 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  +Q  q )  e.  ( 2nd `  B ) )
21 prop 7184 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
22 prcunqu 7194 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  q )  <Q  (
y  +Q  r )  ->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
2321, 22sylan 279 . . . . . . . 8  |-  ( ( B  e.  P.  /\  ( y  +Q  q
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  q )  <Q  (
y  +Q  r )  ->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
2419, 20, 23syl2anc 406 . . . . . . 7  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( ( y  +Q  q )  <Q 
( y  +Q  r
)  ->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
2517, 24mpd 13 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  +Q  r )  e.  ( 2nd `  B ) )
261, 3, 25jca32 306 . . . . 5  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
2726eximi 1547 . . . 4  |-  ( E. y ( ( A 
<P  B  /\  r  e.  Q. )  /\  (
q  <Q  r  /\  (
q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  E. y ( r  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) ) )
28 ltexprlem.1 . . . . . . . . . 10  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
2928ltexprlemelu 7308 . . . . . . . . 9  |-  ( q  e.  ( 2nd `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
30 19.42v 1845 . . . . . . . . 9  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
3129, 30bitr4i 186 . . . . . . . 8  |-  ( q  e.  ( 2nd `  C
)  <->  E. y ( q  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  q )  e.  ( 2nd `  B
) ) ) )
3231anbi2i 448 . . . . . . 7  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
33 19.42v 1845 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
3432, 33bitr4i 186 . . . . . 6  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  E. y
( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
3534anbi2i 448 . . . . 5  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )  <->  ( ( A 
<P  B  /\  r  e.  Q. )  /\  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
36 19.42v 1845 . . . . 5  |-  ( E. y ( ( A 
<P  B  /\  r  e.  Q. )  /\  (
q  <Q  r  /\  (
q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  <-> 
( ( A  <P  B  /\  r  e.  Q. )  /\  E. y ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
3735, 36bitr4i 186 . . . 4  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )  <->  E. y ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
3828ltexprlemelu 7308 . . . . 5  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
39 19.42v 1845 . . . . 5  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
4038, 39bitr4i 186 . . . 4  |-  ( r  e.  ( 2nd `  C
)  <->  E. y ( r  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) ) )
4127, 37, 403imtr4i 200 . . 3  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )  ->  r  e.  ( 2nd `  C ) )
4241ex 114 . 2  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
4342rexlimdvw 2512 1  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299   E.wex 1436    e. wcel 1448   E.wrex 2376   {crab 2379   <.cop 3477   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   1stc1st 5967   2ndc2nd 5968   Q.cnq 6989    +Q cplq 6991    <Q cltq 6994   P.cnp 7000    <P cltp 7004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-ltnqqs 7062  df-inp 7175  df-iltp 7179
This theorem is referenced by:  ltexprlemrnd  7314
  Copyright terms: Public domain W3C validator