| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltexprlemupu | Unicode version | ||
| Description: The upper cut of our constructed difference is upper. Lemma for ltexpri 7680. (Contributed by Jim Kingdon, 21-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 |
|
| Ref | Expression |
|---|---|
| ltexprlemupu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . . 6
| |
| 2 | simprrr 540 |
. . . . . . 7
| |
| 3 | 2 | simpld 112 |
. . . . . 6
|
| 4 | simprl 529 |
. . . . . . . 8
| |
| 5 | simpll 527 |
. . . . . . . . 9
| |
| 6 | simprrl 539 |
. . . . . . . . . 10
| |
| 7 | 6 | adantl 277 |
. . . . . . . . 9
|
| 8 | ltrelpr 7572 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | brel 4715 |
. . . . . . . . . . . 12
|
| 10 | 9 | simpld 112 |
. . . . . . . . . . 11
|
| 11 | prop 7542 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . . 10
|
| 13 | elprnql 7548 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | sylan 283 |
. . . . . . . . 9
|
| 15 | 5, 7, 14 | syl2anc 411 |
. . . . . . . 8
|
| 16 | ltanqi 7469 |
. . . . . . . 8
| |
| 17 | 4, 15, 16 | syl2anc 411 |
. . . . . . 7
|
| 18 | 9 | simprd 114 |
. . . . . . . . 9
|
| 19 | 5, 18 | syl 14 |
. . . . . . . 8
|
| 20 | 2 | simprd 114 |
. . . . . . . 8
|
| 21 | prop 7542 |
. . . . . . . . 9
| |
| 22 | prcunqu 7552 |
. . . . . . . . 9
| |
| 23 | 21, 22 | sylan 283 |
. . . . . . . 8
|
| 24 | 19, 20, 23 | syl2anc 411 |
. . . . . . 7
|
| 25 | 17, 24 | mpd 13 |
. . . . . 6
|
| 26 | 1, 3, 25 | jca32 310 |
. . . . 5
|
| 27 | 26 | eximi 1614 |
. . . 4
|
| 28 | ltexprlem.1 |
. . . . . . . . . 10
| |
| 29 | 28 | ltexprlemelu 7666 |
. . . . . . . . 9
|
| 30 | 19.42v 1921 |
. . . . . . . . 9
| |
| 31 | 29, 30 | bitr4i 187 |
. . . . . . . 8
|
| 32 | 31 | anbi2i 457 |
. . . . . . 7
|
| 33 | 19.42v 1921 |
. . . . . . 7
| |
| 34 | 32, 33 | bitr4i 187 |
. . . . . 6
|
| 35 | 34 | anbi2i 457 |
. . . . 5
|
| 36 | 19.42v 1921 |
. . . . 5
| |
| 37 | 35, 36 | bitr4i 187 |
. . . 4
|
| 38 | 28 | ltexprlemelu 7666 |
. . . . 5
|
| 39 | 19.42v 1921 |
. . . . 5
| |
| 40 | 38, 39 | bitr4i 187 |
. . . 4
|
| 41 | 27, 37, 40 | 3imtr4i 201 |
. . 3
|
| 42 | 41 | ex 115 |
. 2
|
| 43 | 42 | rexlimdvw 2618 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-ltnqqs 7420 df-inp 7533 df-iltp 7537 |
| This theorem is referenced by: ltexprlemrnd 7672 |
| Copyright terms: Public domain | W3C validator |