ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemupu Unicode version

Theorem ltexprlemupu 7566
Description: The upper cut of our constructed difference is upper. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemupu  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemupu
StepHypRef Expression
1 simplr 525 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  r  e.  Q. )
2 simprrr 535 . . . . . . 7  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )
32simpld 111 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  y  e.  ( 1st `  A ) )
4 simprl 526 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  q  <Q  r
)
5 simpll 524 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  A  <P  B )
6 simprrl 534 . . . . . . . . . 10  |-  ( ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
y  e.  ( 1st `  A ) )
76adantl 275 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  y  e.  ( 1st `  A ) )
8 ltrelpr 7467 . . . . . . . . . . . . 13  |-  <P  C_  ( P.  X.  P. )
98brel 4663 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
109simpld 111 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  A  e. 
P. )
11 prop 7437 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1210, 11syl 14 . . . . . . . . . 10  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 elprnql 7443 . . . . . . . . . 10  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
1412, 13sylan 281 . . . . . . . . 9  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
155, 7, 14syl2anc 409 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  y  e.  Q. )
16 ltanqi 7364 . . . . . . . 8  |-  ( ( q  <Q  r  /\  y  e.  Q. )  ->  ( y  +Q  q
)  <Q  ( y  +Q  r ) )
174, 15, 16syl2anc 409 . . . . . . 7  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
189simprd 113 . . . . . . . . 9  |-  ( A 
<P  B  ->  B  e. 
P. )
195, 18syl 14 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  B  e.  P. )
202simprd 113 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  +Q  q )  e.  ( 2nd `  B ) )
21 prop 7437 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
22 prcunqu 7447 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  q )  <Q  (
y  +Q  r )  ->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
2321, 22sylan 281 . . . . . . . 8  |-  ( ( B  e.  P.  /\  ( y  +Q  q
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  q )  <Q  (
y  +Q  r )  ->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
2419, 20, 23syl2anc 409 . . . . . . 7  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( ( y  +Q  q )  <Q 
( y  +Q  r
)  ->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
2517, 24mpd 13 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( y  +Q  r )  e.  ( 2nd `  B ) )
261, 3, 25jca32 308 . . . . 5  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
2726eximi 1593 . . . 4  |-  ( E. y ( ( A 
<P  B  /\  r  e.  Q. )  /\  (
q  <Q  r  /\  (
q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  ->  E. y ( r  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) ) )
28 ltexprlem.1 . . . . . . . . . 10  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
2928ltexprlemelu 7561 . . . . . . . . 9  |-  ( q  e.  ( 2nd `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
30 19.42v 1899 . . . . . . . . 9  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
3129, 30bitr4i 186 . . . . . . . 8  |-  ( q  e.  ( 2nd `  C
)  <->  E. y ( q  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  q )  e.  ( 2nd `  B
) ) ) )
3231anbi2i 454 . . . . . . 7  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
33 19.42v 1899 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
3432, 33bitr4i 186 . . . . . 6  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  E. y
( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
3534anbi2i 454 . . . . 5  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )  <->  ( ( A 
<P  B  /\  r  e.  Q. )  /\  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
36 19.42v 1899 . . . . 5  |-  ( E. y ( ( A 
<P  B  /\  r  e.  Q. )  /\  (
q  <Q  r  /\  (
q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )  <-> 
( ( A  <P  B  /\  r  e.  Q. )  /\  E. y ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
3735, 36bitr4i 186 . . . 4  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )  <->  E. y ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
3828ltexprlemelu 7561 . . . . 5  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
39 19.42v 1899 . . . . 5  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
4038, 39bitr4i 186 . . . 4  |-  ( r  e.  ( 2nd `  C
)  <->  E. y ( r  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) ) )
4127, 37, 403imtr4i 200 . . 3  |-  ( ( ( A  <P  B  /\  r  e.  Q. )  /\  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )  ->  r  e.  ( 2nd `  C ) )
4241ex 114 . 2  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
4342rexlimdvw 2591 1  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   {crab 2452   <.cop 3586   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242    +Q cplq 7244    <Q cltq 7247   P.cnp 7253    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  ltexprlemrnd  7567
  Copyright terms: Public domain W3C validator