ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemrnd Unicode version

Theorem cauappcvgprlemrnd 7825
Description: Lemma for cauappcvgpr 7837. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemrnd  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemrnd
StepHypRef Expression
1 cauappcvgpr.f . . . . . 6  |-  ( ph  ->  F : Q. --> Q. )
2 cauappcvgpr.app . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
3 cauappcvgpr.bnd . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 cauappcvgpr.lim . . . . . 6  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
51, 2, 3, 4cauappcvgprlemopl 7821 . . . . 5  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
65ex 115 . . . 4  |-  ( ph  ->  ( s  e.  ( 1st `  L )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) )
71, 2, 3, 4cauappcvgprlemlol 7822 . . . . . 6  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
873expib 1230 . . . . 5  |-  ( ph  ->  ( ( s  <Q 
r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) ) )
98rexlimdvw 2652 . . . 4  |-  ( ph  ->  ( E. r  e. 
Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) ) )
106, 9impbid 129 . . 3  |-  ( ph  ->  ( s  e.  ( 1st `  L )  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) )
1110ralrimivw 2604 . 2  |-  ( ph  ->  A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) )
121, 2, 3, 4cauappcvgprlemopu 7823 . . . . 5  |-  ( (
ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
r  /\  s  e.  ( 2nd `  L ) ) )
1312ex 115 . . . 4  |-  ( ph  ->  ( r  e.  ( 2nd `  L )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) )
141, 2, 3, 4cauappcvgprlemupu 7824 . . . . . 6  |-  ( (
ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
15143expib 1230 . . . . 5  |-  ( ph  ->  ( ( s  <Q 
r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) ) )
1615rexlimdvw 2652 . . . 4  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  <Q 
r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) ) )
1713, 16impbid 129 . . 3  |-  ( ph  ->  ( r  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) )
1817ralrimivw 2604 . 2  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) )
1911, 18jca 306 1  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   <.cop 3669   class class class wbr 4082   -->wf 5310   ` cfv 5314  (class class class)co 5994   1stc1st 6274   2ndc2nd 6275   Q.cnq 7455    +Q cplq 7457    <Q cltq 7460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528
This theorem is referenced by:  cauappcvgprlemcl  7828
  Copyright terms: Public domain W3C validator