| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txuni2 | Unicode version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| txval.1 |
|
| txuni2.1 |
|
| txuni2.2 |
|
| Ref | Expression |
|---|---|
| txuni2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4828 |
. . 3
| |
| 2 | txuni2.1 |
. . . . . . . 8
| |
| 3 | 2 | eleq2i 2296 |
. . . . . . 7
|
| 4 | eluni2 3892 |
. . . . . . 7
| |
| 5 | 3, 4 | bitri 184 |
. . . . . 6
|
| 6 | txuni2.2 |
. . . . . . . 8
| |
| 7 | 6 | eleq2i 2296 |
. . . . . . 7
|
| 8 | eluni2 3892 |
. . . . . . 7
| |
| 9 | 7, 8 | bitri 184 |
. . . . . 6
|
| 10 | 5, 9 | anbi12i 460 |
. . . . 5
|
| 11 | opelxp 4749 |
. . . . 5
| |
| 12 | reeanv 2701 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3bitr4i 212 |
. . . 4
|
| 14 | opelxp 4749 |
. . . . . 6
| |
| 15 | eqid 2229 |
. . . . . . . . . 10
| |
| 16 | xpeq1 4733 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eqeq2d 2241 |
. . . . . . . . . . 11
|
| 18 | xpeq2 4734 |
. . . . . . . . . . . 12
| |
| 19 | 18 | eqeq2d 2241 |
. . . . . . . . . . 11
|
| 20 | 17, 19 | rspc2ev 2922 |
. . . . . . . . . 10
|
| 21 | 15, 20 | mp3an3 1360 |
. . . . . . . . 9
|
| 22 | vex 2802 |
. . . . . . . . . . 11
| |
| 23 | vex 2802 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | xpex 4834 |
. . . . . . . . . 10
|
| 25 | eqeq1 2236 |
. . . . . . . . . . 11
| |
| 26 | 25 | 2rexbidv 2555 |
. . . . . . . . . 10
|
| 27 | txval.1 |
. . . . . . . . . . 11
| |
| 28 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 29 | 28 | rnmpo 6115 |
. . . . . . . . . . 11
|
| 30 | 27, 29 | eqtri 2250 |
. . . . . . . . . 10
|
| 31 | 24, 26, 30 | elab2 2951 |
. . . . . . . . 9
|
| 32 | 21, 31 | sylibr 134 |
. . . . . . . 8
|
| 33 | elssuni 3916 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | 34 | sseld 3223 |
. . . . . 6
|
| 36 | 14, 35 | biimtrrid 153 |
. . . . 5
|
| 37 | 36 | rexlimivv 2654 |
. . . 4
|
| 38 | 13, 37 | sylbi 121 |
. . 3
|
| 39 | 1, 38 | relssi 4810 |
. 2
|
| 40 | elssuni 3916 |
. . . . . . . . . 10
| |
| 41 | 40, 2 | sseqtrrdi 3273 |
. . . . . . . . 9
|
| 42 | elssuni 3916 |
. . . . . . . . . 10
| |
| 43 | 42, 6 | sseqtrrdi 3273 |
. . . . . . . . 9
|
| 44 | xpss12 4826 |
. . . . . . . . 9
| |
| 45 | 41, 43, 44 | syl2an 289 |
. . . . . . . 8
|
| 46 | vex 2802 |
. . . . . . . . . 10
| |
| 47 | vex 2802 |
. . . . . . . . . 10
| |
| 48 | 46, 47 | xpex 4834 |
. . . . . . . . 9
|
| 49 | 48 | elpw 3655 |
. . . . . . . 8
|
| 50 | 45, 49 | sylibr 134 |
. . . . . . 7
|
| 51 | 50 | rgen2 2616 |
. . . . . 6
|
| 52 | 28 | fmpo 6347 |
. . . . . 6
|
| 53 | 51, 52 | mpbi 145 |
. . . . 5
|
| 54 | frn 5482 |
. . . . 5
| |
| 55 | 53, 54 | ax-mp 5 |
. . . 4
|
| 56 | 27, 55 | eqsstri 3256 |
. . 3
|
| 57 | sspwuni 4050 |
. . 3
| |
| 58 | 56, 57 | mpbi 145 |
. 2
|
| 59 | 39, 58 | eqssi 3240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: txbasex 14931 txtopon 14936 |
| Copyright terms: Public domain | W3C validator |