Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txuni2 | Unicode version |
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
txval.1 | |
txuni2.1 | |
txuni2.2 |
Ref | Expression |
---|---|
txuni2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 4713 | . . 3 | |
2 | txuni2.1 | . . . . . . . 8 | |
3 | 2 | eleq2i 2233 | . . . . . . 7 |
4 | eluni2 3793 | . . . . . . 7 | |
5 | 3, 4 | bitri 183 | . . . . . 6 |
6 | txuni2.2 | . . . . . . . 8 | |
7 | 6 | eleq2i 2233 | . . . . . . 7 |
8 | eluni2 3793 | . . . . . . 7 | |
9 | 7, 8 | bitri 183 | . . . . . 6 |
10 | 5, 9 | anbi12i 456 | . . . . 5 |
11 | opelxp 4634 | . . . . 5 | |
12 | reeanv 2635 | . . . . 5 | |
13 | 10, 11, 12 | 3bitr4i 211 | . . . 4 |
14 | opelxp 4634 | . . . . . 6 | |
15 | eqid 2165 | . . . . . . . . . 10 | |
16 | xpeq1 4618 | . . . . . . . . . . . 12 | |
17 | 16 | eqeq2d 2177 | . . . . . . . . . . 11 |
18 | xpeq2 4619 | . . . . . . . . . . . 12 | |
19 | 18 | eqeq2d 2177 | . . . . . . . . . . 11 |
20 | 17, 19 | rspc2ev 2845 | . . . . . . . . . 10 |
21 | 15, 20 | mp3an3 1316 | . . . . . . . . 9 |
22 | vex 2729 | . . . . . . . . . . 11 | |
23 | vex 2729 | . . . . . . . . . . 11 | |
24 | 22, 23 | xpex 4719 | . . . . . . . . . 10 |
25 | eqeq1 2172 | . . . . . . . . . . 11 | |
26 | 25 | 2rexbidv 2491 | . . . . . . . . . 10 |
27 | txval.1 | . . . . . . . . . . 11 | |
28 | eqid 2165 | . . . . . . . . . . . 12 | |
29 | 28 | rnmpo 5952 | . . . . . . . . . . 11 |
30 | 27, 29 | eqtri 2186 | . . . . . . . . . 10 |
31 | 24, 26, 30 | elab2 2874 | . . . . . . . . 9 |
32 | 21, 31 | sylibr 133 | . . . . . . . 8 |
33 | elssuni 3817 | . . . . . . . 8 | |
34 | 32, 33 | syl 14 | . . . . . . 7 |
35 | 34 | sseld 3141 | . . . . . 6 |
36 | 14, 35 | syl5bir 152 | . . . . 5 |
37 | 36 | rexlimivv 2589 | . . . 4 |
38 | 13, 37 | sylbi 120 | . . 3 |
39 | 1, 38 | relssi 4695 | . 2 |
40 | elssuni 3817 | . . . . . . . . . 10 | |
41 | 40, 2 | sseqtrrdi 3191 | . . . . . . . . 9 |
42 | elssuni 3817 | . . . . . . . . . 10 | |
43 | 42, 6 | sseqtrrdi 3191 | . . . . . . . . 9 |
44 | xpss12 4711 | . . . . . . . . 9 | |
45 | 41, 43, 44 | syl2an 287 | . . . . . . . 8 |
46 | vex 2729 | . . . . . . . . . 10 | |
47 | vex 2729 | . . . . . . . . . 10 | |
48 | 46, 47 | xpex 4719 | . . . . . . . . 9 |
49 | 48 | elpw 3565 | . . . . . . . 8 |
50 | 45, 49 | sylibr 133 | . . . . . . 7 |
51 | 50 | rgen2 2552 | . . . . . 6 |
52 | 28 | fmpo 6169 | . . . . . 6 |
53 | 51, 52 | mpbi 144 | . . . . 5 |
54 | frn 5346 | . . . . 5 | |
55 | 53, 54 | ax-mp 5 | . . . 4 |
56 | 27, 55 | eqsstri 3174 | . . 3 |
57 | sspwuni 3950 | . . 3 | |
58 | 56, 57 | mpbi 144 | . 2 |
59 | 39, 58 | eqssi 3158 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 wss 3116 cpw 3559 cop 3579 cuni 3789 cxp 4602 crn 4605 wf 5184 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: txbasex 12897 txtopon 12902 |
Copyright terms: Public domain | W3C validator |