| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txuni2 | Unicode version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| txval.1 |
|
| txuni2.1 |
|
| txuni2.2 |
|
| Ref | Expression |
|---|---|
| txuni2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4802 |
. . 3
| |
| 2 | txuni2.1 |
. . . . . . . 8
| |
| 3 | 2 | eleq2i 2274 |
. . . . . . 7
|
| 4 | eluni2 3868 |
. . . . . . 7
| |
| 5 | 3, 4 | bitri 184 |
. . . . . 6
|
| 6 | txuni2.2 |
. . . . . . . 8
| |
| 7 | 6 | eleq2i 2274 |
. . . . . . 7
|
| 8 | eluni2 3868 |
. . . . . . 7
| |
| 9 | 7, 8 | bitri 184 |
. . . . . 6
|
| 10 | 5, 9 | anbi12i 460 |
. . . . 5
|
| 11 | opelxp 4723 |
. . . . 5
| |
| 12 | reeanv 2678 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3bitr4i 212 |
. . . 4
|
| 14 | opelxp 4723 |
. . . . . 6
| |
| 15 | eqid 2207 |
. . . . . . . . . 10
| |
| 16 | xpeq1 4707 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eqeq2d 2219 |
. . . . . . . . . . 11
|
| 18 | xpeq2 4708 |
. . . . . . . . . . . 12
| |
| 19 | 18 | eqeq2d 2219 |
. . . . . . . . . . 11
|
| 20 | 17, 19 | rspc2ev 2899 |
. . . . . . . . . 10
|
| 21 | 15, 20 | mp3an3 1339 |
. . . . . . . . 9
|
| 22 | vex 2779 |
. . . . . . . . . . 11
| |
| 23 | vex 2779 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | xpex 4808 |
. . . . . . . . . 10
|
| 25 | eqeq1 2214 |
. . . . . . . . . . 11
| |
| 26 | 25 | 2rexbidv 2533 |
. . . . . . . . . 10
|
| 27 | txval.1 |
. . . . . . . . . . 11
| |
| 28 | eqid 2207 |
. . . . . . . . . . . 12
| |
| 29 | 28 | rnmpo 6079 |
. . . . . . . . . . 11
|
| 30 | 27, 29 | eqtri 2228 |
. . . . . . . . . 10
|
| 31 | 24, 26, 30 | elab2 2928 |
. . . . . . . . 9
|
| 32 | 21, 31 | sylibr 134 |
. . . . . . . 8
|
| 33 | elssuni 3892 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | 34 | sseld 3200 |
. . . . . 6
|
| 36 | 14, 35 | biimtrrid 153 |
. . . . 5
|
| 37 | 36 | rexlimivv 2631 |
. . . 4
|
| 38 | 13, 37 | sylbi 121 |
. . 3
|
| 39 | 1, 38 | relssi 4784 |
. 2
|
| 40 | elssuni 3892 |
. . . . . . . . . 10
| |
| 41 | 40, 2 | sseqtrrdi 3250 |
. . . . . . . . 9
|
| 42 | elssuni 3892 |
. . . . . . . . . 10
| |
| 43 | 42, 6 | sseqtrrdi 3250 |
. . . . . . . . 9
|
| 44 | xpss12 4800 |
. . . . . . . . 9
| |
| 45 | 41, 43, 44 | syl2an 289 |
. . . . . . . 8
|
| 46 | vex 2779 |
. . . . . . . . . 10
| |
| 47 | vex 2779 |
. . . . . . . . . 10
| |
| 48 | 46, 47 | xpex 4808 |
. . . . . . . . 9
|
| 49 | 48 | elpw 3632 |
. . . . . . . 8
|
| 50 | 45, 49 | sylibr 134 |
. . . . . . 7
|
| 51 | 50 | rgen2 2594 |
. . . . . 6
|
| 52 | 28 | fmpo 6310 |
. . . . . 6
|
| 53 | 51, 52 | mpbi 145 |
. . . . 5
|
| 54 | frn 5454 |
. . . . 5
| |
| 55 | 53, 54 | ax-mp 5 |
. . . 4
|
| 56 | 27, 55 | eqsstri 3233 |
. . 3
|
| 57 | sspwuni 4026 |
. . 3
| |
| 58 | 56, 57 | mpbi 145 |
. 2
|
| 59 | 39, 58 | eqssi 3217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: txbasex 14844 txtopon 14849 |
| Copyright terms: Public domain | W3C validator |