ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1stres Unicode version

Theorem f1stres 6159
Description: Mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f1stres  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A

Proof of Theorem f1stres
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2740 . . . . . . . 8  |-  y  e. 
_V
2 vex 2740 . . . . . . . 8  |-  z  e. 
_V
31, 2op1sta 5110 . . . . . . 7  |-  U. dom  {
<. y ,  z >. }  =  y
43eleq1i 2243 . . . . . 6  |-  ( U. dom  { <. y ,  z
>. }  e.  A  <->  y  e.  A )
54biimpri 133 . . . . 5  |-  ( y  e.  A  ->  U. dom  {
<. y ,  z >. }  e.  A )
65adantr 276 . . . 4  |-  ( ( y  e.  A  /\  z  e.  B )  ->  U. dom  { <. y ,  z >. }  e.  A )
76rgen2 2563 . . 3  |-  A. y  e.  A  A. z  e.  B  U. dom  { <. y ,  z >. }  e.  A
8 sneq 3603 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  { x }  =  { <. y ,  z
>. } )
98dmeqd 4829 . . . . . 6  |-  ( x  =  <. y ,  z
>.  ->  dom  { x }  =  dom  { <. y ,  z >. } )
109unieqd 3820 . . . . 5  |-  ( x  =  <. y ,  z
>.  ->  U. dom  { x }  =  U. dom  { <. y ,  z >. } )
1110eleq1d 2246 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( U. dom  { x }  e.  A  <->  U.
dom  { <. y ,  z
>. }  e.  A ) )
1211ralxp 4770 . . 3  |-  ( A. x  e.  ( A  X.  B ) U. dom  { x }  e.  A  <->  A. y  e.  A  A. z  e.  B  U. dom  { <. y ,  z
>. }  e.  A )
137, 12mpbir 146 . 2  |-  A. x  e.  ( A  X.  B
) U. dom  {
x }  e.  A
14 df-1st 6140 . . . . 5  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
1514reseq1i 4903 . . . 4  |-  ( 1st  |`  ( A  X.  B
) )  =  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )
16 ssv 3177 . . . . 5  |-  ( A  X.  B )  C_  _V
17 resmpt 4955 . . . . 5  |-  ( ( A  X.  B ) 
C_  _V  ->  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } ) )
1816, 17ax-mp 5 . . . 4  |-  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } )
1915, 18eqtri 2198 . . 3  |-  ( 1st  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } )
2019fmpt 5666 . 2  |-  ( A. x  e.  ( A  X.  B ) U. dom  { x }  e.  A  <->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A )
2113, 20mpbi 145 1  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2737    C_ wss 3129   {csn 3592   <.cop 3595   U.cuni 3809    |-> cmpt 4064    X. cxp 4624   dom cdm 4626    |` cres 4628   -->wf 5212   1stc1st 6138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-1st 6140
This theorem is referenced by:  fo1stresm  6161  1stcof  6163  tx1cn  13739
  Copyright terms: Public domain W3C validator