ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1stres Unicode version

Theorem f1stres 6217
Description: Mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f1stres  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A

Proof of Theorem f1stres
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . . . . 8  |-  y  e. 
_V
2 vex 2766 . . . . . . . 8  |-  z  e. 
_V
31, 2op1sta 5151 . . . . . . 7  |-  U. dom  {
<. y ,  z >. }  =  y
43eleq1i 2262 . . . . . 6  |-  ( U. dom  { <. y ,  z
>. }  e.  A  <->  y  e.  A )
54biimpri 133 . . . . 5  |-  ( y  e.  A  ->  U. dom  {
<. y ,  z >. }  e.  A )
65adantr 276 . . . 4  |-  ( ( y  e.  A  /\  z  e.  B )  ->  U. dom  { <. y ,  z >. }  e.  A )
76rgen2 2583 . . 3  |-  A. y  e.  A  A. z  e.  B  U. dom  { <. y ,  z >. }  e.  A
8 sneq 3633 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  { x }  =  { <. y ,  z
>. } )
98dmeqd 4868 . . . . . 6  |-  ( x  =  <. y ,  z
>.  ->  dom  { x }  =  dom  { <. y ,  z >. } )
109unieqd 3850 . . . . 5  |-  ( x  =  <. y ,  z
>.  ->  U. dom  { x }  =  U. dom  { <. y ,  z >. } )
1110eleq1d 2265 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( U. dom  { x }  e.  A  <->  U.
dom  { <. y ,  z
>. }  e.  A ) )
1211ralxp 4809 . . 3  |-  ( A. x  e.  ( A  X.  B ) U. dom  { x }  e.  A  <->  A. y  e.  A  A. z  e.  B  U. dom  { <. y ,  z
>. }  e.  A )
137, 12mpbir 146 . 2  |-  A. x  e.  ( A  X.  B
) U. dom  {
x }  e.  A
14 df-1st 6198 . . . . 5  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
1514reseq1i 4942 . . . 4  |-  ( 1st  |`  ( A  X.  B
) )  =  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )
16 ssv 3205 . . . . 5  |-  ( A  X.  B )  C_  _V
17 resmpt 4994 . . . . 5  |-  ( ( A  X.  B ) 
C_  _V  ->  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } ) )
1816, 17ax-mp 5 . . . 4  |-  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } )
1915, 18eqtri 2217 . . 3  |-  ( 1st  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } )
2019fmpt 5712 . 2  |-  ( A. x  e.  ( A  X.  B ) U. dom  { x }  e.  A  <->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A )
2113, 20mpbi 145 1  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157   {csn 3622   <.cop 3625   U.cuni 3839    |-> cmpt 4094    X. cxp 4661   dom cdm 4663    |` cres 4665   -->wf 5254   1stc1st 6196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-1st 6198
This theorem is referenced by:  fo1stresm  6219  1stcof  6221  tx1cn  14505
  Copyright terms: Public domain W3C validator