ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnsubrglem Unicode version

Theorem cnsubrglem 13880
Description: Lemma for zsubrg 13881 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
cnsubglem.1  |-  ( x  e.  A  ->  x  e.  CC )
cnsubglem.2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )
cnsubglem.3  |-  ( x  e.  A  ->  -u x  e.  A )
cnsubrglem.4  |-  1  e.  A
cnsubrglem.5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  x.  y
)  e.  A )
Assertion
Ref Expression
cnsubrglem  |-  A  e.  (SubRing ` fld )
Distinct variable group:    x, y, A

Proof of Theorem cnsubrglem
StepHypRef Expression
1 cnsubglem.1 . . 3  |-  ( x  e.  A  ->  x  e.  CC )
2 cnsubglem.2 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )
3 cnsubglem.3 . . 3  |-  ( x  e.  A  ->  -u x  e.  A )
4 cnsubrglem.4 . . 3  |-  1  e.  A
51, 2, 3, 4cnsubglem 13879 . 2  |-  A  e.  (SubGrp ` fld )
6 cnsubrglem.5 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  x.  y
)  e.  A )
76rgen2 2576 . 2  |-  A. x  e.  A  A. y  e.  A  ( x  x.  y )  e.  A
8 cnring 13870 . . 3  |-fld  e.  Ring
9 cnfldbas 13865 . . . 4  |-  CC  =  ( Base ` fld )
10 cnfld1 13872 . . . 4  |-  1  =  ( 1r ` fld )
11 cnfldmul 13867 . . . 4  |-  x.  =  ( .r ` fld )
129, 10, 11issubrg2 13585 . . 3  |-  (fld  e.  Ring  -> 
( A  e.  (SubRing ` fld ) 
<->  ( A  e.  (SubGrp ` fld )  /\  1  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  x.  y
)  e.  A ) ) )
138, 12ax-mp 5 . 2  |-  ( A  e.  (SubRing ` fld )  <->  ( A  e.  (SubGrp ` fld )  /\  1  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  x.  y )  e.  A
) )
145, 4, 7, 13mpbir3an 1181 1  |-  A  e.  (SubRing ` fld )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2160   A.wral 2468   ` cfv 5235  (class class class)co 5895   CCcc 7838   1c1 7841    + caddc 7843    x. cmul 7845   -ucneg 8158  SubGrpcsubg 13103   Ringcrg 13347  SubRingcsubrg 13561  ℂfldccnfld 13861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-addf 7962  ax-mulf 7963
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-6 9011  df-7 9012  df-8 9013  df-9 9014  df-n0 9206  df-z 9283  df-dec 9414  df-uz 9558  df-fz 10038  df-cj 10882  df-struct 12513  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-starv 12601  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-subg 13106  df-cmn 13222  df-mgp 13272  df-ur 13311  df-ring 13349  df-cring 13350  df-subrg 13563  df-icnfld 13862
This theorem is referenced by:  zsubrg  13881  gzsubrg  13882
  Copyright terms: Public domain W3C validator