ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsff1o Unicode version

Theorem xpsff1o 12773
Description: The function appearing in xpsval 12776 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
Assertion
Ref Expression
xpsff1o  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
Distinct variable groups:    A, k, x, y    B, k, x, y
Allowed substitution hints:    F( x, y, k)

Proof of Theorem xpsff1o
Dummy variables  a  b  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsfrnel2 12770 . . . . . 6  |-  ( {
<. (/) ,  x >. , 
<. 1o ,  y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( x  e.  A  /\  y  e.  B ) )
21biimpri 133 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { <. (/) ,  x >. , 
<. 1o ,  y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
32rgen2 2563 . . . 4  |-  A. x  e.  A  A. y  e.  B  { <. (/) ,  x >. ,  <. 1o ,  y
>. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
4 xpsff1o.f . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
54fmpo 6204 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  { <.
(/) ,  x >. , 
<. 1o ,  y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  F :
( A  X.  B
) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
63, 5mpbi 145 . . 3  |-  F :
( A  X.  B
) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
7 1st2nd2 6178 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
87fveq2d 5521 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( F `  z )  =  ( F `  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
9 df-ov 5880 . . . . . . . 8  |-  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
10 xp1st 6168 . . . . . . . . 9  |-  ( z  e.  ( A  X.  B )  ->  ( 1st `  z )  e.  A )
11 xp2nd 6169 . . . . . . . . 9  |-  ( z  e.  ( A  X.  B )  ->  ( 2nd `  z )  e.  B )
124xpsfval 12772 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )  -> 
( ( 1st `  z
) F ( 2nd `  z ) )  =  { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } )
1310, 11, 12syl2anc 411 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  (
( 1st `  z
) F ( 2nd `  z ) )  =  { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } )
149, 13eqtr3id 2224 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )  =  { <.
(/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } )
158, 14eqtrd 2210 . . . . . 6  |-  ( z  e.  ( A  X.  B )  ->  ( F `  z )  =  { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } )
16 1st2nd2 6178 . . . . . . . 8  |-  ( w  e.  ( A  X.  B )  ->  w  =  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
1716fveq2d 5521 . . . . . . 7  |-  ( w  e.  ( A  X.  B )  ->  ( F `  w )  =  ( F `  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
18 df-ov 5880 . . . . . . . 8  |-  ( ( 1st `  w ) F ( 2nd `  w
) )  =  ( F `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
19 xp1st 6168 . . . . . . . . 9  |-  ( w  e.  ( A  X.  B )  ->  ( 1st `  w )  e.  A )
20 xp2nd 6169 . . . . . . . . 9  |-  ( w  e.  ( A  X.  B )  ->  ( 2nd `  w )  e.  B )
214xpsfval 12772 . . . . . . . . 9  |-  ( ( ( 1st `  w
)  e.  A  /\  ( 2nd `  w )  e.  B )  -> 
( ( 1st `  w
) F ( 2nd `  w ) )  =  { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } )
2219, 20, 21syl2anc 411 . . . . . . . 8  |-  ( w  e.  ( A  X.  B )  ->  (
( 1st `  w
) F ( 2nd `  w ) )  =  { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } )
2318, 22eqtr3id 2224 . . . . . . 7  |-  ( w  e.  ( A  X.  B )  ->  ( F `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } )
2417, 23eqtrd 2210 . . . . . 6  |-  ( w  e.  ( A  X.  B )  ->  ( F `  w )  =  { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } )
2515, 24eqeqan12d 2193 . . . . 5  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( ( F `  z )  =  ( F `  w )  <->  { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } ) )
26 fveq1 5516 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  ( { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  (/) )  =  ( { <. (/) ,  ( 1st `  w )
>. ,  <. 1o , 
( 2nd `  w
) >. } `  (/) ) )
27 1stexg 6170 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
2827elv 2743 . . . . . . . . 9  |-  ( 1st `  z )  e.  _V
29 fvpr0o 12765 . . . . . . . . 9  |-  ( ( 1st `  z )  e.  _V  ->  ( { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  (/) )  =  ( 1st `  z
) )
3028, 29ax-mp 5 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  (/) )  =  ( 1st `  z
)
31 1stexg 6170 . . . . . . . . . 10  |-  ( w  e.  _V  ->  ( 1st `  w )  e. 
_V )
3231elv 2743 . . . . . . . . 9  |-  ( 1st `  w )  e.  _V
33 fvpr0o 12765 . . . . . . . . 9  |-  ( ( 1st `  w )  e.  _V  ->  ( { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  (/) )  =  ( 1st `  w
) )
3432, 33ax-mp 5 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  (/) )  =  ( 1st `  w
)
3526, 30, 343eqtr3g 2233 . . . . . . 7  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  ( 1st `  z )  =  ( 1st `  w
) )
36 fveq1 5516 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  ( { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  1o )  =  ( { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  1o ) )
37 2ndexg 6171 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( 2nd `  z )  e. 
_V )
3837elv 2743 . . . . . . . . 9  |-  ( 2nd `  z )  e.  _V
39 fvpr1o 12766 . . . . . . . . 9  |-  ( ( 2nd `  z )  e.  _V  ->  ( { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  1o )  =  ( 2nd `  z ) )
4038, 39ax-mp 5 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  1o )  =  ( 2nd `  z )
41 2ndexg 6171 . . . . . . . . . 10  |-  ( w  e.  _V  ->  ( 2nd `  w )  e. 
_V )
4241elv 2743 . . . . . . . . 9  |-  ( 2nd `  w )  e.  _V
43 fvpr1o 12766 . . . . . . . . 9  |-  ( ( 2nd `  w )  e.  _V  ->  ( { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  1o )  =  ( 2nd `  w ) )
4442, 43ax-mp 5 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  1o )  =  ( 2nd `  w )
4536, 40, 443eqtr3g 2233 . . . . . . 7  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  ( 2nd `  z )  =  ( 2nd `  w
) )
4635, 45opeq12d 3788 . . . . . 6  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
477, 16eqeqan12d 2193 . . . . . 6  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( z  =  w  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
4846, 47imbitrrid 156 . . . . 5  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( { <. (/) ,  ( 1st `  z )
>. ,  <. 1o , 
( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  z  =  w ) )
4925, 48sylbid 150 . . . 4  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( ( F `  z )  =  ( F `  w )  ->  z  =  w ) )
5049rgen2 2563 . . 3  |-  A. z  e.  ( A  X.  B
) A. w  e.  ( A  X.  B
) ( ( F `
 z )  =  ( F `  w
)  ->  z  =  w )
51 dff13 5771 . . 3  |-  ( F : ( A  X.  B ) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  A. z  e.  ( A  X.  B ) A. w  e.  ( A  X.  B
) ( ( F `
 z )  =  ( F `  w
)  ->  z  =  w ) ) )
526, 50, 51mpbir2an 942 . 2  |-  F :
( A  X.  B
) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
53 xpsfrnel 12768 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( z  Fn  2o  /\  ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B ) )
5453simp2bi 1013 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( z `  (/) )  e.  A )
5553simp3bi 1014 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( z `  1o )  e.  B
)
564xpsfval 12772 . . . . . . 7  |-  ( ( ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B )  ->  (
( z `  (/) ) F ( z `  1o ) )  =  { <.
(/) ,  ( z `  (/) ) >. ,  <. 1o ,  ( z `  1o ) >. } )
5754, 55, 56syl2anc 411 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( ( z `
 (/) ) F ( z `  1o ) )  =  { <. (/)
,  ( z `  (/) ) >. ,  <. 1o , 
( z `  1o ) >. } )
58 ixpfn 6706 . . . . . . 7  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  z  Fn  2o )
59 xpsfeq 12769 . . . . . . 7  |-  ( z  Fn  2o  ->  { <. (/)
,  ( z `  (/) ) >. ,  <. 1o , 
( z `  1o ) >. }  =  z )
6058, 59syl 14 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  { <. (/) ,  ( z `  (/) ) >. ,  <. 1o ,  ( z `  1o )
>. }  =  z )
6157, 60eqtr2d 2211 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  z  =  ( ( z `  (/) ) F ( z `  1o ) ) )
62 rspceov 5919 . . . . 5  |-  ( ( ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B  /\  z  =  ( ( z `  (/) ) F ( z `
 1o ) ) )  ->  E. a  e.  A  E. b  e.  B  z  =  ( a F b ) )
6354, 55, 61, 62syl3anc 1238 . . . 4  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  E. a  e.  A  E. b  e.  B  z  =  ( a F b ) )
6463rgen 2530 . . 3  |-  A. z  e.  X_  k  e.  2o  if ( k  =  (/) ,  A ,  B ) E. a  e.  A  E. b  e.  B  z  =  ( a F b )
65 foov 6023 . . 3  |-  ( F : ( A  X.  B ) -onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  A. z  e.  X_  k  e.  2o  if ( k  =  (/) ,  A ,  B ) E. a  e.  A  E. b  e.  B  z  =  ( a F b ) ) )
666, 64, 65mpbir2an 942 . 2  |-  F :
( A  X.  B
) -onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
67 df-f1o 5225 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( F : ( A  X.  B )
-1-1->
X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  F : ( A  X.  B )
-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) ) )
6852, 66, 67mpbir2an 942 1  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2739   (/)c0 3424   ifcif 3536   {cpr 3595   <.cop 3597    X. cxp 4626    Fn wfn 5213   -->wf 5214   -1-1->wf1 5215   -onto->wfo 5216   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   1stc1st 6141   2ndc2nd 6142   1oc1o 6412   2oc2o 6413   X_cixp 6700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-1o 6419  df-2o 6420  df-er 6537  df-ixp 6701  df-en 6743  df-fin 6745
This theorem is referenced by:  xpsfrn  12774  xpsff1o2  12775
  Copyright terms: Public domain W3C validator