| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsff1o | Unicode version | ||
| Description: The function appearing in
xpsval 13184 is a bijection from the cartesian
product to the indexed cartesian product indexed on the pair
|
| Ref | Expression |
|---|---|
| xpsff1o.f |
|
| Ref | Expression |
|---|---|
| xpsff1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsfrnel2 13178 |
. . . . . 6
| |
| 2 | 1 | biimpri 133 |
. . . . 5
|
| 3 | 2 | rgen2 2592 |
. . . 4
|
| 4 | xpsff1o.f |
. . . . 5
| |
| 5 | 4 | fmpo 6287 |
. . . 4
|
| 6 | 3, 5 | mpbi 145 |
. . 3
|
| 7 | 1st2nd2 6261 |
. . . . . . . 8
| |
| 8 | 7 | fveq2d 5580 |
. . . . . . 7
|
| 9 | df-ov 5947 |
. . . . . . . 8
| |
| 10 | xp1st 6251 |
. . . . . . . . 9
| |
| 11 | xp2nd 6252 |
. . . . . . . . 9
| |
| 12 | 4 | xpsfval 13180 |
. . . . . . . . 9
|
| 13 | 10, 11, 12 | syl2anc 411 |
. . . . . . . 8
|
| 14 | 9, 13 | eqtr3id 2252 |
. . . . . . 7
|
| 15 | 8, 14 | eqtrd 2238 |
. . . . . 6
|
| 16 | 1st2nd2 6261 |
. . . . . . . 8
| |
| 17 | 16 | fveq2d 5580 |
. . . . . . 7
|
| 18 | df-ov 5947 |
. . . . . . . 8
| |
| 19 | xp1st 6251 |
. . . . . . . . 9
| |
| 20 | xp2nd 6252 |
. . . . . . . . 9
| |
| 21 | 4 | xpsfval 13180 |
. . . . . . . . 9
|
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . . 8
|
| 23 | 18, 22 | eqtr3id 2252 |
. . . . . . 7
|
| 24 | 17, 23 | eqtrd 2238 |
. . . . . 6
|
| 25 | 15, 24 | eqeqan12d 2221 |
. . . . 5
|
| 26 | fveq1 5575 |
. . . . . . . 8
| |
| 27 | 1stexg 6253 |
. . . . . . . . . 10
| |
| 28 | 27 | elv 2776 |
. . . . . . . . 9
|
| 29 | fvpr0o 13173 |
. . . . . . . . 9
| |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . 8
|
| 31 | 1stexg 6253 |
. . . . . . . . . 10
| |
| 32 | 31 | elv 2776 |
. . . . . . . . 9
|
| 33 | fvpr0o 13173 |
. . . . . . . . 9
| |
| 34 | 32, 33 | ax-mp 5 |
. . . . . . . 8
|
| 35 | 26, 30, 34 | 3eqtr3g 2261 |
. . . . . . 7
|
| 36 | fveq1 5575 |
. . . . . . . 8
| |
| 37 | 2ndexg 6254 |
. . . . . . . . . 10
| |
| 38 | 37 | elv 2776 |
. . . . . . . . 9
|
| 39 | fvpr1o 13174 |
. . . . . . . . 9
| |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
|
| 41 | 2ndexg 6254 |
. . . . . . . . . 10
| |
| 42 | 41 | elv 2776 |
. . . . . . . . 9
|
| 43 | fvpr1o 13174 |
. . . . . . . . 9
| |
| 44 | 42, 43 | ax-mp 5 |
. . . . . . . 8
|
| 45 | 36, 40, 44 | 3eqtr3g 2261 |
. . . . . . 7
|
| 46 | 35, 45 | opeq12d 3827 |
. . . . . 6
|
| 47 | 7, 16 | eqeqan12d 2221 |
. . . . . 6
|
| 48 | 46, 47 | imbitrrid 156 |
. . . . 5
|
| 49 | 25, 48 | sylbid 150 |
. . . 4
|
| 50 | 49 | rgen2 2592 |
. . 3
|
| 51 | dff13 5837 |
. . 3
| |
| 52 | 6, 50, 51 | mpbir2an 945 |
. 2
|
| 53 | xpsfrnel 13176 |
. . . . . 6
| |
| 54 | 53 | simp2bi 1016 |
. . . . 5
|
| 55 | 53 | simp3bi 1017 |
. . . . 5
|
| 56 | 4 | xpsfval 13180 |
. . . . . . 7
|
| 57 | 54, 55, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | ixpfn 6791 |
. . . . . . 7
| |
| 59 | xpsfeq 13177 |
. . . . . . 7
| |
| 60 | 58, 59 | syl 14 |
. . . . . 6
|
| 61 | 57, 60 | eqtr2d 2239 |
. . . . 5
|
| 62 | rspceov 5987 |
. . . . 5
| |
| 63 | 54, 55, 61, 62 | syl3anc 1250 |
. . . 4
|
| 64 | 63 | rgen 2559 |
. . 3
|
| 65 | foov 6093 |
. . 3
| |
| 66 | 6, 64, 65 | mpbir2an 945 |
. 2
|
| 67 | df-f1o 5278 |
. 2
| |
| 68 | 52, 66, 67 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-1o 6502 df-2o 6503 df-er 6620 df-ixp 6786 df-en 6828 df-fin 6830 |
| This theorem is referenced by: xpsfrn 13182 xpsff1o2 13183 |
| Copyright terms: Public domain | W3C validator |