| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsff1o | Unicode version | ||
| Description: The function appearing in
xpsval 13054 is a bijection from the cartesian
product to the indexed cartesian product indexed on the pair
|
| Ref | Expression |
|---|---|
| xpsff1o.f |
|
| Ref | Expression |
|---|---|
| xpsff1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsfrnel2 13048 |
. . . . . 6
| |
| 2 | 1 | biimpri 133 |
. . . . 5
|
| 3 | 2 | rgen2 2583 |
. . . 4
|
| 4 | xpsff1o.f |
. . . . 5
| |
| 5 | 4 | fmpo 6268 |
. . . 4
|
| 6 | 3, 5 | mpbi 145 |
. . 3
|
| 7 | 1st2nd2 6242 |
. . . . . . . 8
| |
| 8 | 7 | fveq2d 5565 |
. . . . . . 7
|
| 9 | df-ov 5928 |
. . . . . . . 8
| |
| 10 | xp1st 6232 |
. . . . . . . . 9
| |
| 11 | xp2nd 6233 |
. . . . . . . . 9
| |
| 12 | 4 | xpsfval 13050 |
. . . . . . . . 9
|
| 13 | 10, 11, 12 | syl2anc 411 |
. . . . . . . 8
|
| 14 | 9, 13 | eqtr3id 2243 |
. . . . . . 7
|
| 15 | 8, 14 | eqtrd 2229 |
. . . . . 6
|
| 16 | 1st2nd2 6242 |
. . . . . . . 8
| |
| 17 | 16 | fveq2d 5565 |
. . . . . . 7
|
| 18 | df-ov 5928 |
. . . . . . . 8
| |
| 19 | xp1st 6232 |
. . . . . . . . 9
| |
| 20 | xp2nd 6233 |
. . . . . . . . 9
| |
| 21 | 4 | xpsfval 13050 |
. . . . . . . . 9
|
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . . 8
|
| 23 | 18, 22 | eqtr3id 2243 |
. . . . . . 7
|
| 24 | 17, 23 | eqtrd 2229 |
. . . . . 6
|
| 25 | 15, 24 | eqeqan12d 2212 |
. . . . 5
|
| 26 | fveq1 5560 |
. . . . . . . 8
| |
| 27 | 1stexg 6234 |
. . . . . . . . . 10
| |
| 28 | 27 | elv 2767 |
. . . . . . . . 9
|
| 29 | fvpr0o 13043 |
. . . . . . . . 9
| |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . 8
|
| 31 | 1stexg 6234 |
. . . . . . . . . 10
| |
| 32 | 31 | elv 2767 |
. . . . . . . . 9
|
| 33 | fvpr0o 13043 |
. . . . . . . . 9
| |
| 34 | 32, 33 | ax-mp 5 |
. . . . . . . 8
|
| 35 | 26, 30, 34 | 3eqtr3g 2252 |
. . . . . . 7
|
| 36 | fveq1 5560 |
. . . . . . . 8
| |
| 37 | 2ndexg 6235 |
. . . . . . . . . 10
| |
| 38 | 37 | elv 2767 |
. . . . . . . . 9
|
| 39 | fvpr1o 13044 |
. . . . . . . . 9
| |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
|
| 41 | 2ndexg 6235 |
. . . . . . . . . 10
| |
| 42 | 41 | elv 2767 |
. . . . . . . . 9
|
| 43 | fvpr1o 13044 |
. . . . . . . . 9
| |
| 44 | 42, 43 | ax-mp 5 |
. . . . . . . 8
|
| 45 | 36, 40, 44 | 3eqtr3g 2252 |
. . . . . . 7
|
| 46 | 35, 45 | opeq12d 3817 |
. . . . . 6
|
| 47 | 7, 16 | eqeqan12d 2212 |
. . . . . 6
|
| 48 | 46, 47 | imbitrrid 156 |
. . . . 5
|
| 49 | 25, 48 | sylbid 150 |
. . . 4
|
| 50 | 49 | rgen2 2583 |
. . 3
|
| 51 | dff13 5818 |
. . 3
| |
| 52 | 6, 50, 51 | mpbir2an 944 |
. 2
|
| 53 | xpsfrnel 13046 |
. . . . . 6
| |
| 54 | 53 | simp2bi 1015 |
. . . . 5
|
| 55 | 53 | simp3bi 1016 |
. . . . 5
|
| 56 | 4 | xpsfval 13050 |
. . . . . . 7
|
| 57 | 54, 55, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | ixpfn 6772 |
. . . . . . 7
| |
| 59 | xpsfeq 13047 |
. . . . . . 7
| |
| 60 | 58, 59 | syl 14 |
. . . . . 6
|
| 61 | 57, 60 | eqtr2d 2230 |
. . . . 5
|
| 62 | rspceov 5968 |
. . . . 5
| |
| 63 | 54, 55, 61, 62 | syl3anc 1249 |
. . . 4
|
| 64 | 63 | rgen 2550 |
. . 3
|
| 65 | foov 6074 |
. . 3
| |
| 66 | 6, 64, 65 | mpbir2an 944 |
. 2
|
| 67 | df-f1o 5266 |
. 2
| |
| 68 | 52, 66, 67 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-1o 6483 df-2o 6484 df-er 6601 df-ixp 6767 df-en 6809 df-fin 6811 |
| This theorem is referenced by: xpsfrn 13052 xpsff1o2 13053 |
| Copyright terms: Public domain | W3C validator |