ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsff1o Unicode version

Theorem xpsff1o 13296
Description: The function appearing in xpsval 13299 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
Assertion
Ref Expression
xpsff1o  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
Distinct variable groups:    A, k, x, y    B, k, x, y
Allowed substitution hints:    F( x, y, k)

Proof of Theorem xpsff1o
Dummy variables  a  b  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsfrnel2 13293 . . . . . 6  |-  ( {
<. (/) ,  x >. , 
<. 1o ,  y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( x  e.  A  /\  y  e.  B ) )
21biimpri 133 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { <. (/) ,  x >. , 
<. 1o ,  y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
32rgen2 2594 . . . 4  |-  A. x  e.  A  A. y  e.  B  { <. (/) ,  x >. ,  <. 1o ,  y
>. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
4 xpsff1o.f . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
54fmpo 6310 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  { <.
(/) ,  x >. , 
<. 1o ,  y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  F :
( A  X.  B
) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
63, 5mpbi 145 . . 3  |-  F :
( A  X.  B
) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
7 1st2nd2 6284 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
87fveq2d 5603 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( F `  z )  =  ( F `  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
9 df-ov 5970 . . . . . . . 8  |-  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
10 xp1st 6274 . . . . . . . . 9  |-  ( z  e.  ( A  X.  B )  ->  ( 1st `  z )  e.  A )
11 xp2nd 6275 . . . . . . . . 9  |-  ( z  e.  ( A  X.  B )  ->  ( 2nd `  z )  e.  B )
124xpsfval 13295 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )  -> 
( ( 1st `  z
) F ( 2nd `  z ) )  =  { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } )
1310, 11, 12syl2anc 411 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  (
( 1st `  z
) F ( 2nd `  z ) )  =  { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } )
149, 13eqtr3id 2254 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )  =  { <.
(/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } )
158, 14eqtrd 2240 . . . . . 6  |-  ( z  e.  ( A  X.  B )  ->  ( F `  z )  =  { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } )
16 1st2nd2 6284 . . . . . . . 8  |-  ( w  e.  ( A  X.  B )  ->  w  =  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
1716fveq2d 5603 . . . . . . 7  |-  ( w  e.  ( A  X.  B )  ->  ( F `  w )  =  ( F `  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
18 df-ov 5970 . . . . . . . 8  |-  ( ( 1st `  w ) F ( 2nd `  w
) )  =  ( F `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
19 xp1st 6274 . . . . . . . . 9  |-  ( w  e.  ( A  X.  B )  ->  ( 1st `  w )  e.  A )
20 xp2nd 6275 . . . . . . . . 9  |-  ( w  e.  ( A  X.  B )  ->  ( 2nd `  w )  e.  B )
214xpsfval 13295 . . . . . . . . 9  |-  ( ( ( 1st `  w
)  e.  A  /\  ( 2nd `  w )  e.  B )  -> 
( ( 1st `  w
) F ( 2nd `  w ) )  =  { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } )
2219, 20, 21syl2anc 411 . . . . . . . 8  |-  ( w  e.  ( A  X.  B )  ->  (
( 1st `  w
) F ( 2nd `  w ) )  =  { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } )
2318, 22eqtr3id 2254 . . . . . . 7  |-  ( w  e.  ( A  X.  B )  ->  ( F `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } )
2417, 23eqtrd 2240 . . . . . 6  |-  ( w  e.  ( A  X.  B )  ->  ( F `  w )  =  { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } )
2515, 24eqeqan12d 2223 . . . . 5  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( ( F `  z )  =  ( F `  w )  <->  { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } ) )
26 fveq1 5598 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  ( { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  (/) )  =  ( { <. (/) ,  ( 1st `  w )
>. ,  <. 1o , 
( 2nd `  w
) >. } `  (/) ) )
27 1stexg 6276 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
2827elv 2780 . . . . . . . . 9  |-  ( 1st `  z )  e.  _V
29 fvpr0o 13288 . . . . . . . . 9  |-  ( ( 1st `  z )  e.  _V  ->  ( { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  (/) )  =  ( 1st `  z
) )
3028, 29ax-mp 5 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  (/) )  =  ( 1st `  z
)
31 1stexg 6276 . . . . . . . . . 10  |-  ( w  e.  _V  ->  ( 1st `  w )  e. 
_V )
3231elv 2780 . . . . . . . . 9  |-  ( 1st `  w )  e.  _V
33 fvpr0o 13288 . . . . . . . . 9  |-  ( ( 1st `  w )  e.  _V  ->  ( { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  (/) )  =  ( 1st `  w
) )
3432, 33ax-mp 5 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  (/) )  =  ( 1st `  w
)
3526, 30, 343eqtr3g 2263 . . . . . . 7  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  ( 1st `  z )  =  ( 1st `  w
) )
36 fveq1 5598 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  ( { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  1o )  =  ( { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  1o ) )
37 2ndexg 6277 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( 2nd `  z )  e. 
_V )
3837elv 2780 . . . . . . . . 9  |-  ( 2nd `  z )  e.  _V
39 fvpr1o 13289 . . . . . . . . 9  |-  ( ( 2nd `  z )  e.  _V  ->  ( { <. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  1o )  =  ( 2nd `  z ) )
4038, 39ax-mp 5 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. } `  1o )  =  ( 2nd `  z )
41 2ndexg 6277 . . . . . . . . . 10  |-  ( w  e.  _V  ->  ( 2nd `  w )  e. 
_V )
4241elv 2780 . . . . . . . . 9  |-  ( 2nd `  w )  e.  _V
43 fvpr1o 13289 . . . . . . . . 9  |-  ( ( 2nd `  w )  e.  _V  ->  ( { <. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  1o )  =  ( 2nd `  w ) )
4442, 43ax-mp 5 . . . . . . . 8  |-  ( {
<. (/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. } `  1o )  =  ( 2nd `  w )
4536, 40, 443eqtr3g 2263 . . . . . . 7  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  ( 2nd `  z )  =  ( 2nd `  w
) )
4635, 45opeq12d 3841 . . . . . 6  |-  ( {
<. (/) ,  ( 1st `  z ) >. ,  <. 1o ,  ( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
477, 16eqeqan12d 2223 . . . . . 6  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( z  =  w  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
4846, 47imbitrrid 156 . . . . 5  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( { <. (/) ,  ( 1st `  z )
>. ,  <. 1o , 
( 2nd `  z
) >. }  =  { <.
(/) ,  ( 1st `  w ) >. ,  <. 1o ,  ( 2nd `  w
) >. }  ->  z  =  w ) )
4925, 48sylbid 150 . . . 4  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( ( F `  z )  =  ( F `  w )  ->  z  =  w ) )
5049rgen2 2594 . . 3  |-  A. z  e.  ( A  X.  B
) A. w  e.  ( A  X.  B
) ( ( F `
 z )  =  ( F `  w
)  ->  z  =  w )
51 dff13 5860 . . 3  |-  ( F : ( A  X.  B ) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  A. z  e.  ( A  X.  B ) A. w  e.  ( A  X.  B
) ( ( F `
 z )  =  ( F `  w
)  ->  z  =  w ) ) )
526, 50, 51mpbir2an 945 . 2  |-  F :
( A  X.  B
) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
53 xpsfrnel 13291 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( z  Fn  2o  /\  ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B ) )
5453simp2bi 1016 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( z `  (/) )  e.  A )
5553simp3bi 1017 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( z `  1o )  e.  B
)
564xpsfval 13295 . . . . . . 7  |-  ( ( ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B )  ->  (
( z `  (/) ) F ( z `  1o ) )  =  { <.
(/) ,  ( z `  (/) ) >. ,  <. 1o ,  ( z `  1o ) >. } )
5754, 55, 56syl2anc 411 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( ( z `
 (/) ) F ( z `  1o ) )  =  { <. (/)
,  ( z `  (/) ) >. ,  <. 1o , 
( z `  1o ) >. } )
58 ixpfn 6814 . . . . . . 7  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  z  Fn  2o )
59 xpsfeq 13292 . . . . . . 7  |-  ( z  Fn  2o  ->  { <. (/)
,  ( z `  (/) ) >. ,  <. 1o , 
( z `  1o ) >. }  =  z )
6058, 59syl 14 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  { <. (/) ,  ( z `  (/) ) >. ,  <. 1o ,  ( z `  1o )
>. }  =  z )
6157, 60eqtr2d 2241 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  z  =  ( ( z `  (/) ) F ( z `  1o ) ) )
62 rspceov 6010 . . . . 5  |-  ( ( ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B  /\  z  =  ( ( z `  (/) ) F ( z `
 1o ) ) )  ->  E. a  e.  A  E. b  e.  B  z  =  ( a F b ) )
6354, 55, 61, 62syl3anc 1250 . . . 4  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  E. a  e.  A  E. b  e.  B  z  =  ( a F b ) )
6463rgen 2561 . . 3  |-  A. z  e.  X_  k  e.  2o  if ( k  =  (/) ,  A ,  B ) E. a  e.  A  E. b  e.  B  z  =  ( a F b )
65 foov 6116 . . 3  |-  ( F : ( A  X.  B ) -onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  A. z  e.  X_  k  e.  2o  if ( k  =  (/) ,  A ,  B ) E. a  e.  A  E. b  e.  B  z  =  ( a F b ) ) )
666, 64, 65mpbir2an 945 . 2  |-  F :
( A  X.  B
) -onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
67 df-f1o 5297 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( F : ( A  X.  B )
-1-1->
X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  F : ( A  X.  B )
-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) ) )
6852, 66, 67mpbir2an 945 1  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776   (/)c0 3468   ifcif 3579   {cpr 3644   <.cop 3646    X. cxp 4691    Fn wfn 5285   -->wf 5286   -1-1->wf1 5287   -onto->wfo 5288   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   1stc1st 6247   2ndc2nd 6248   1oc1o 6518   2oc2o 6519   X_cixp 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-1o 6525  df-2o 6526  df-er 6643  df-ixp 6809  df-en 6851  df-fin 6853
This theorem is referenced by:  xpsfrn  13297  xpsff1o2  13298
  Copyright terms: Public domain W3C validator