| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsff1o | Unicode version | ||
| Description: The function appearing in
xpsval 13299 is a bijection from the cartesian
product to the indexed cartesian product indexed on the pair
|
| Ref | Expression |
|---|---|
| xpsff1o.f |
|
| Ref | Expression |
|---|---|
| xpsff1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsfrnel2 13293 |
. . . . . 6
| |
| 2 | 1 | biimpri 133 |
. . . . 5
|
| 3 | 2 | rgen2 2594 |
. . . 4
|
| 4 | xpsff1o.f |
. . . . 5
| |
| 5 | 4 | fmpo 6310 |
. . . 4
|
| 6 | 3, 5 | mpbi 145 |
. . 3
|
| 7 | 1st2nd2 6284 |
. . . . . . . 8
| |
| 8 | 7 | fveq2d 5603 |
. . . . . . 7
|
| 9 | df-ov 5970 |
. . . . . . . 8
| |
| 10 | xp1st 6274 |
. . . . . . . . 9
| |
| 11 | xp2nd 6275 |
. . . . . . . . 9
| |
| 12 | 4 | xpsfval 13295 |
. . . . . . . . 9
|
| 13 | 10, 11, 12 | syl2anc 411 |
. . . . . . . 8
|
| 14 | 9, 13 | eqtr3id 2254 |
. . . . . . 7
|
| 15 | 8, 14 | eqtrd 2240 |
. . . . . 6
|
| 16 | 1st2nd2 6284 |
. . . . . . . 8
| |
| 17 | 16 | fveq2d 5603 |
. . . . . . 7
|
| 18 | df-ov 5970 |
. . . . . . . 8
| |
| 19 | xp1st 6274 |
. . . . . . . . 9
| |
| 20 | xp2nd 6275 |
. . . . . . . . 9
| |
| 21 | 4 | xpsfval 13295 |
. . . . . . . . 9
|
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . . 8
|
| 23 | 18, 22 | eqtr3id 2254 |
. . . . . . 7
|
| 24 | 17, 23 | eqtrd 2240 |
. . . . . 6
|
| 25 | 15, 24 | eqeqan12d 2223 |
. . . . 5
|
| 26 | fveq1 5598 |
. . . . . . . 8
| |
| 27 | 1stexg 6276 |
. . . . . . . . . 10
| |
| 28 | 27 | elv 2780 |
. . . . . . . . 9
|
| 29 | fvpr0o 13288 |
. . . . . . . . 9
| |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . 8
|
| 31 | 1stexg 6276 |
. . . . . . . . . 10
| |
| 32 | 31 | elv 2780 |
. . . . . . . . 9
|
| 33 | fvpr0o 13288 |
. . . . . . . . 9
| |
| 34 | 32, 33 | ax-mp 5 |
. . . . . . . 8
|
| 35 | 26, 30, 34 | 3eqtr3g 2263 |
. . . . . . 7
|
| 36 | fveq1 5598 |
. . . . . . . 8
| |
| 37 | 2ndexg 6277 |
. . . . . . . . . 10
| |
| 38 | 37 | elv 2780 |
. . . . . . . . 9
|
| 39 | fvpr1o 13289 |
. . . . . . . . 9
| |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
|
| 41 | 2ndexg 6277 |
. . . . . . . . . 10
| |
| 42 | 41 | elv 2780 |
. . . . . . . . 9
|
| 43 | fvpr1o 13289 |
. . . . . . . . 9
| |
| 44 | 42, 43 | ax-mp 5 |
. . . . . . . 8
|
| 45 | 36, 40, 44 | 3eqtr3g 2263 |
. . . . . . 7
|
| 46 | 35, 45 | opeq12d 3841 |
. . . . . 6
|
| 47 | 7, 16 | eqeqan12d 2223 |
. . . . . 6
|
| 48 | 46, 47 | imbitrrid 156 |
. . . . 5
|
| 49 | 25, 48 | sylbid 150 |
. . . 4
|
| 50 | 49 | rgen2 2594 |
. . 3
|
| 51 | dff13 5860 |
. . 3
| |
| 52 | 6, 50, 51 | mpbir2an 945 |
. 2
|
| 53 | xpsfrnel 13291 |
. . . . . 6
| |
| 54 | 53 | simp2bi 1016 |
. . . . 5
|
| 55 | 53 | simp3bi 1017 |
. . . . 5
|
| 56 | 4 | xpsfval 13295 |
. . . . . . 7
|
| 57 | 54, 55, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | ixpfn 6814 |
. . . . . . 7
| |
| 59 | xpsfeq 13292 |
. . . . . . 7
| |
| 60 | 58, 59 | syl 14 |
. . . . . 6
|
| 61 | 57, 60 | eqtr2d 2241 |
. . . . 5
|
| 62 | rspceov 6010 |
. . . . 5
| |
| 63 | 54, 55, 61, 62 | syl3anc 1250 |
. . . 4
|
| 64 | 63 | rgen 2561 |
. . 3
|
| 65 | foov 6116 |
. . 3
| |
| 66 | 6, 64, 65 | mpbir2an 945 |
. 2
|
| 67 | df-f1o 5297 |
. 2
| |
| 68 | 52, 66, 67 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-1o 6525 df-2o 6526 df-er 6643 df-ixp 6809 df-en 6851 df-fin 6853 |
| This theorem is referenced by: xpsfrn 13297 xpsff1o2 13298 |
| Copyright terms: Public domain | W3C validator |