| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsff1o | Unicode version | ||
| Description: The function appearing in
xpsval 13385 is a bijection from the cartesian
product to the indexed cartesian product indexed on the pair
|
| Ref | Expression |
|---|---|
| xpsff1o.f |
|
| Ref | Expression |
|---|---|
| xpsff1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsfrnel2 13379 |
. . . . . 6
| |
| 2 | 1 | biimpri 133 |
. . . . 5
|
| 3 | 2 | rgen2 2616 |
. . . 4
|
| 4 | xpsff1o.f |
. . . . 5
| |
| 5 | 4 | fmpo 6347 |
. . . 4
|
| 6 | 3, 5 | mpbi 145 |
. . 3
|
| 7 | 1st2nd2 6321 |
. . . . . . . 8
| |
| 8 | 7 | fveq2d 5631 |
. . . . . . 7
|
| 9 | df-ov 6004 |
. . . . . . . 8
| |
| 10 | xp1st 6311 |
. . . . . . . . 9
| |
| 11 | xp2nd 6312 |
. . . . . . . . 9
| |
| 12 | 4 | xpsfval 13381 |
. . . . . . . . 9
|
| 13 | 10, 11, 12 | syl2anc 411 |
. . . . . . . 8
|
| 14 | 9, 13 | eqtr3id 2276 |
. . . . . . 7
|
| 15 | 8, 14 | eqtrd 2262 |
. . . . . 6
|
| 16 | 1st2nd2 6321 |
. . . . . . . 8
| |
| 17 | 16 | fveq2d 5631 |
. . . . . . 7
|
| 18 | df-ov 6004 |
. . . . . . . 8
| |
| 19 | xp1st 6311 |
. . . . . . . . 9
| |
| 20 | xp2nd 6312 |
. . . . . . . . 9
| |
| 21 | 4 | xpsfval 13381 |
. . . . . . . . 9
|
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . . 8
|
| 23 | 18, 22 | eqtr3id 2276 |
. . . . . . 7
|
| 24 | 17, 23 | eqtrd 2262 |
. . . . . 6
|
| 25 | 15, 24 | eqeqan12d 2245 |
. . . . 5
|
| 26 | fveq1 5626 |
. . . . . . . 8
| |
| 27 | 1stexg 6313 |
. . . . . . . . . 10
| |
| 28 | 27 | elv 2803 |
. . . . . . . . 9
|
| 29 | fvpr0o 13374 |
. . . . . . . . 9
| |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . 8
|
| 31 | 1stexg 6313 |
. . . . . . . . . 10
| |
| 32 | 31 | elv 2803 |
. . . . . . . . 9
|
| 33 | fvpr0o 13374 |
. . . . . . . . 9
| |
| 34 | 32, 33 | ax-mp 5 |
. . . . . . . 8
|
| 35 | 26, 30, 34 | 3eqtr3g 2285 |
. . . . . . 7
|
| 36 | fveq1 5626 |
. . . . . . . 8
| |
| 37 | 2ndexg 6314 |
. . . . . . . . . 10
| |
| 38 | 37 | elv 2803 |
. . . . . . . . 9
|
| 39 | fvpr1o 13375 |
. . . . . . . . 9
| |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
|
| 41 | 2ndexg 6314 |
. . . . . . . . . 10
| |
| 42 | 41 | elv 2803 |
. . . . . . . . 9
|
| 43 | fvpr1o 13375 |
. . . . . . . . 9
| |
| 44 | 42, 43 | ax-mp 5 |
. . . . . . . 8
|
| 45 | 36, 40, 44 | 3eqtr3g 2285 |
. . . . . . 7
|
| 46 | 35, 45 | opeq12d 3865 |
. . . . . 6
|
| 47 | 7, 16 | eqeqan12d 2245 |
. . . . . 6
|
| 48 | 46, 47 | imbitrrid 156 |
. . . . 5
|
| 49 | 25, 48 | sylbid 150 |
. . . 4
|
| 50 | 49 | rgen2 2616 |
. . 3
|
| 51 | dff13 5892 |
. . 3
| |
| 52 | 6, 50, 51 | mpbir2an 948 |
. 2
|
| 53 | xpsfrnel 13377 |
. . . . . 6
| |
| 54 | 53 | simp2bi 1037 |
. . . . 5
|
| 55 | 53 | simp3bi 1038 |
. . . . 5
|
| 56 | 4 | xpsfval 13381 |
. . . . . . 7
|
| 57 | 54, 55, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | ixpfn 6851 |
. . . . . . 7
| |
| 59 | xpsfeq 13378 |
. . . . . . 7
| |
| 60 | 58, 59 | syl 14 |
. . . . . 6
|
| 61 | 57, 60 | eqtr2d 2263 |
. . . . 5
|
| 62 | rspceov 6044 |
. . . . 5
| |
| 63 | 54, 55, 61, 62 | syl3anc 1271 |
. . . 4
|
| 64 | 63 | rgen 2583 |
. . 3
|
| 65 | foov 6152 |
. . 3
| |
| 66 | 6, 64, 65 | mpbir2an 948 |
. 2
|
| 67 | df-f1o 5325 |
. 2
| |
| 68 | 52, 66, 67 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-1o 6562 df-2o 6563 df-er 6680 df-ixp 6846 df-en 6888 df-fin 6890 |
| This theorem is referenced by: xpsfrn 13383 xpsff1o2 13384 |
| Copyright terms: Public domain | W3C validator |