Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f2ndres | Unicode version |
Description: Mapping of a restriction of the (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
f2ndres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2715 | . . . . . . . 8 | |
2 | vex 2715 | . . . . . . . 8 | |
3 | 1, 2 | op2nda 5067 | . . . . . . 7 |
4 | 3 | eleq1i 2223 | . . . . . 6 |
5 | 4 | biimpri 132 | . . . . 5 |
6 | 5 | adantl 275 | . . . 4 |
7 | 6 | rgen2 2543 | . . 3 |
8 | sneq 3571 | . . . . . . 7 | |
9 | 8 | rneqd 4812 | . . . . . 6 |
10 | 9 | unieqd 3783 | . . . . 5 |
11 | 10 | eleq1d 2226 | . . . 4 |
12 | 11 | ralxp 4726 | . . 3 |
13 | 7, 12 | mpbir 145 | . 2 |
14 | df-2nd 6083 | . . . . 5 | |
15 | 14 | reseq1i 4859 | . . . 4 |
16 | ssv 3150 | . . . . 5 | |
17 | resmpt 4911 | . . . . 5 | |
18 | 16, 17 | ax-mp 5 | . . . 4 |
19 | 15, 18 | eqtri 2178 | . . 3 |
20 | 19 | fmpt 5614 | . 2 |
21 | 13, 20 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 wcel 2128 wral 2435 cvv 2712 wss 3102 csn 3560 cop 3563 cuni 3772 cmpt 4025 cxp 4581 crn 4584 cres 4585 wf 5163 c2nd 6081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-2nd 6083 |
This theorem is referenced by: fo2ndresm 6104 2ndcof 6106 f2ndf 6167 eucalgcvga 11915 tx2cn 12630 |
Copyright terms: Public domain | W3C validator |