ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f2ndres Unicode version

Theorem f2ndres 6139
Description: Mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f2ndres  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B

Proof of Theorem f2ndres
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . . . . 8  |-  y  e. 
_V
2 vex 2733 . . . . . . . 8  |-  z  e. 
_V
31, 2op2nda 5095 . . . . . . 7  |-  U. ran  {
<. y ,  z >. }  =  z
43eleq1i 2236 . . . . . 6  |-  ( U. ran  { <. y ,  z
>. }  e.  B  <->  z  e.  B )
54biimpri 132 . . . . 5  |-  ( z  e.  B  ->  U. ran  {
<. y ,  z >. }  e.  B )
65adantl 275 . . . 4  |-  ( ( y  e.  A  /\  z  e.  B )  ->  U. ran  { <. y ,  z >. }  e.  B )
76rgen2 2556 . . 3  |-  A. y  e.  A  A. z  e.  B  U. ran  { <. y ,  z >. }  e.  B
8 sneq 3594 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  { x }  =  { <. y ,  z
>. } )
98rneqd 4840 . . . . . 6  |-  ( x  =  <. y ,  z
>.  ->  ran  { x }  =  ran  { <. y ,  z >. } )
109unieqd 3807 . . . . 5  |-  ( x  =  <. y ,  z
>.  ->  U. ran  { x }  =  U. ran  { <. y ,  z >. } )
1110eleq1d 2239 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( U. ran  { x }  e.  B  <->  U.
ran  { <. y ,  z
>. }  e.  B ) )
1211ralxp 4754 . . 3  |-  ( A. x  e.  ( A  X.  B ) U. ran  { x }  e.  B  <->  A. y  e.  A  A. z  e.  B  U. ran  { <. y ,  z
>. }  e.  B )
137, 12mpbir 145 . 2  |-  A. x  e.  ( A  X.  B
) U. ran  {
x }  e.  B
14 df-2nd 6120 . . . . 5  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
1514reseq1i 4887 . . . 4  |-  ( 2nd  |`  ( A  X.  B
) )  =  ( ( x  e.  _V  |->  U.
ran  { x } )  |`  ( A  X.  B
) )
16 ssv 3169 . . . . 5  |-  ( A  X.  B )  C_  _V
17 resmpt 4939 . . . . 5  |-  ( ( A  X.  B ) 
C_  _V  ->  ( ( x  e.  _V  |->  U.
ran  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
ran  { x } ) )
1816, 17ax-mp 5 . . . 4  |-  ( ( x  e.  _V  |->  U.
ran  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
ran  { x } )
1915, 18eqtri 2191 . . 3  |-  ( 2nd  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
ran  { x } )
2019fmpt 5646 . 2  |-  ( A. x  e.  ( A  X.  B ) U. ran  { x }  e.  B  <->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B )
2113, 20mpbi 144 1  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730    C_ wss 3121   {csn 3583   <.cop 3586   U.cuni 3796    |-> cmpt 4050    X. cxp 4609   ran crn 4612    |` cres 4613   -->wf 5194   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-2nd 6120
This theorem is referenced by:  fo2ndresm  6141  2ndcof  6143  f2ndf  6205  eucalgcvga  12012  tx2cn  13064
  Copyright terms: Public domain W3C validator