Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f2ndres | Unicode version |
Description: Mapping of a restriction of the (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
f2ndres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . . . 8 | |
2 | vex 2729 | . . . . . . . 8 | |
3 | 1, 2 | op2nda 5088 | . . . . . . 7 |
4 | 3 | eleq1i 2232 | . . . . . 6 |
5 | 4 | biimpri 132 | . . . . 5 |
6 | 5 | adantl 275 | . . . 4 |
7 | 6 | rgen2 2552 | . . 3 |
8 | sneq 3587 | . . . . . . 7 | |
9 | 8 | rneqd 4833 | . . . . . 6 |
10 | 9 | unieqd 3800 | . . . . 5 |
11 | 10 | eleq1d 2235 | . . . 4 |
12 | 11 | ralxp 4747 | . . 3 |
13 | 7, 12 | mpbir 145 | . 2 |
14 | df-2nd 6109 | . . . . 5 | |
15 | 14 | reseq1i 4880 | . . . 4 |
16 | ssv 3164 | . . . . 5 | |
17 | resmpt 4932 | . . . . 5 | |
18 | 16, 17 | ax-mp 5 | . . . 4 |
19 | 15, 18 | eqtri 2186 | . . 3 |
20 | 19 | fmpt 5635 | . 2 |
21 | 13, 20 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 wral 2444 cvv 2726 wss 3116 csn 3576 cop 3579 cuni 3789 cmpt 4043 cxp 4602 crn 4605 cres 4606 wf 5184 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-2nd 6109 |
This theorem is referenced by: fo2ndresm 6130 2ndcof 6132 f2ndf 6194 eucalgcvga 11990 tx2cn 12910 |
Copyright terms: Public domain | W3C validator |