ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f2ndres Unicode version

Theorem f2ndres 6215
Description: Mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f2ndres  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B

Proof of Theorem f2ndres
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . . . . 8  |-  y  e. 
_V
2 vex 2763 . . . . . . . 8  |-  z  e. 
_V
31, 2op2nda 5151 . . . . . . 7  |-  U. ran  {
<. y ,  z >. }  =  z
43eleq1i 2259 . . . . . 6  |-  ( U. ran  { <. y ,  z
>. }  e.  B  <->  z  e.  B )
54biimpri 133 . . . . 5  |-  ( z  e.  B  ->  U. ran  {
<. y ,  z >. }  e.  B )
65adantl 277 . . . 4  |-  ( ( y  e.  A  /\  z  e.  B )  ->  U. ran  { <. y ,  z >. }  e.  B )
76rgen2 2580 . . 3  |-  A. y  e.  A  A. z  e.  B  U. ran  { <. y ,  z >. }  e.  B
8 sneq 3630 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  { x }  =  { <. y ,  z
>. } )
98rneqd 4892 . . . . . 6  |-  ( x  =  <. y ,  z
>.  ->  ran  { x }  =  ran  { <. y ,  z >. } )
109unieqd 3847 . . . . 5  |-  ( x  =  <. y ,  z
>.  ->  U. ran  { x }  =  U. ran  { <. y ,  z >. } )
1110eleq1d 2262 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( U. ran  { x }  e.  B  <->  U.
ran  { <. y ,  z
>. }  e.  B ) )
1211ralxp 4806 . . 3  |-  ( A. x  e.  ( A  X.  B ) U. ran  { x }  e.  B  <->  A. y  e.  A  A. z  e.  B  U. ran  { <. y ,  z
>. }  e.  B )
137, 12mpbir 146 . 2  |-  A. x  e.  ( A  X.  B
) U. ran  {
x }  e.  B
14 df-2nd 6196 . . . . 5  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
1514reseq1i 4939 . . . 4  |-  ( 2nd  |`  ( A  X.  B
) )  =  ( ( x  e.  _V  |->  U.
ran  { x } )  |`  ( A  X.  B
) )
16 ssv 3202 . . . . 5  |-  ( A  X.  B )  C_  _V
17 resmpt 4991 . . . . 5  |-  ( ( A  X.  B ) 
C_  _V  ->  ( ( x  e.  _V  |->  U.
ran  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
ran  { x } ) )
1816, 17ax-mp 5 . . . 4  |-  ( ( x  e.  _V  |->  U.
ran  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
ran  { x } )
1915, 18eqtri 2214 . . 3  |-  ( 2nd  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
ran  { x } )
2019fmpt 5709 . 2  |-  ( A. x  e.  ( A  X.  B ) U. ran  { x }  e.  B  <->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B )
2113, 20mpbi 145 1  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3154   {csn 3619   <.cop 3622   U.cuni 3836    |-> cmpt 4091    X. cxp 4658   ran crn 4661    |` cres 4662   -->wf 5251   2ndc2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-2nd 6196
This theorem is referenced by:  fo2ndresm  6217  2ndcof  6219  f2ndf  6281  eucalgcvga  12199  tx2cn  14449
  Copyright terms: Public domain W3C validator