ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f2ndres Unicode version

Theorem f2ndres 6304
Description: Mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f2ndres  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B

Proof of Theorem f2ndres
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . . . . 8  |-  y  e. 
_V
2 vex 2802 . . . . . . . 8  |-  z  e. 
_V
31, 2op2nda 5212 . . . . . . 7  |-  U. ran  {
<. y ,  z >. }  =  z
43eleq1i 2295 . . . . . 6  |-  ( U. ran  { <. y ,  z
>. }  e.  B  <->  z  e.  B )
54biimpri 133 . . . . 5  |-  ( z  e.  B  ->  U. ran  {
<. y ,  z >. }  e.  B )
65adantl 277 . . . 4  |-  ( ( y  e.  A  /\  z  e.  B )  ->  U. ran  { <. y ,  z >. }  e.  B )
76rgen2 2616 . . 3  |-  A. y  e.  A  A. z  e.  B  U. ran  { <. y ,  z >. }  e.  B
8 sneq 3677 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  { x }  =  { <. y ,  z
>. } )
98rneqd 4952 . . . . . 6  |-  ( x  =  <. y ,  z
>.  ->  ran  { x }  =  ran  { <. y ,  z >. } )
109unieqd 3898 . . . . 5  |-  ( x  =  <. y ,  z
>.  ->  U. ran  { x }  =  U. ran  { <. y ,  z >. } )
1110eleq1d 2298 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( U. ran  { x }  e.  B  <->  U.
ran  { <. y ,  z
>. }  e.  B ) )
1211ralxp 4864 . . 3  |-  ( A. x  e.  ( A  X.  B ) U. ran  { x }  e.  B  <->  A. y  e.  A  A. z  e.  B  U. ran  { <. y ,  z
>. }  e.  B )
137, 12mpbir 146 . 2  |-  A. x  e.  ( A  X.  B
) U. ran  {
x }  e.  B
14 df-2nd 6285 . . . . 5  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
1514reseq1i 5000 . . . 4  |-  ( 2nd  |`  ( A  X.  B
) )  =  ( ( x  e.  _V  |->  U.
ran  { x } )  |`  ( A  X.  B
) )
16 ssv 3246 . . . . 5  |-  ( A  X.  B )  C_  _V
17 resmpt 5052 . . . . 5  |-  ( ( A  X.  B ) 
C_  _V  ->  ( ( x  e.  _V  |->  U.
ran  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
ran  { x } ) )
1816, 17ax-mp 5 . . . 4  |-  ( ( x  e.  _V  |->  U.
ran  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
ran  { x } )
1915, 18eqtri 2250 . . 3  |-  ( 2nd  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
ran  { x } )
2019fmpt 5784 . 2  |-  ( A. x  e.  ( A  X.  B ) U. ran  { x }  e.  B  <->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B )
2113, 20mpbi 145 1  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   {csn 3666   <.cop 3669   U.cuni 3887    |-> cmpt 4144    X. cxp 4716   ran crn 4719    |` cres 4720   -->wf 5313   2ndc2nd 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-2nd 6285
This theorem is referenced by:  fo2ndresm  6306  2ndcof  6308  f2ndf  6370  eucalgcvga  12575  tx2cn  14938
  Copyright terms: Public domain W3C validator