ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2onetap Unicode version

Theorem 2onetap 7441
Description: Negated equality is a tight apartness on  2o. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2onetap  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o
Distinct variable group:    v, u

Proof of Theorem 2onetap
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6667 . . . . 5  |-  2o  e.  om
2 elnn 4698 . . . . 5  |-  ( ( x  e.  2o  /\  2o  e.  om )  ->  x  e.  om )
31, 2mpan2 425 . . . 4  |-  ( x  e.  2o  ->  x  e.  om )
4 elnn 4698 . . . . 5  |-  ( ( y  e.  2o  /\  2o  e.  om )  -> 
y  e.  om )
51, 4mpan2 425 . . . 4  |-  ( y  e.  2o  ->  y  e.  om )
6 nndceq 6645 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  -> DECID  x  =  y )
73, 5, 6syl2an 289 . . 3  |-  ( ( x  e.  2o  /\  y  e.  2o )  -> DECID  x  =  y )
87rgen2 2616 . 2  |-  A. x  e.  2o  A. y  e.  2o DECID  x  =  y
9 netap 7440 . 2  |-  ( A. x  e.  2o  A. y  e.  2o DECID  x  =  y  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o )
108, 9ax-mp 5 1  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o
Colors of variables: wff set class
Syntax hints:    /\ wa 104  DECID wdc 839    e. wcel 2200    =/= wne 2400   A.wral 2508   {copab 4144   omcom 4682   2oc2o 6556   TAp wtap 7435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-1o 6562  df-2o 6563  df-pap 7434  df-tap 7436
This theorem is referenced by:  2omotaplemst  7444
  Copyright terms: Public domain W3C validator