ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2onetap Unicode version

Theorem 2onetap 7369
Description: Negated equality is a tight apartness on  2o. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2onetap  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o
Distinct variable group:    v, u

Proof of Theorem 2onetap
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6609 . . . . 5  |-  2o  e.  om
2 elnn 4655 . . . . 5  |-  ( ( x  e.  2o  /\  2o  e.  om )  ->  x  e.  om )
31, 2mpan2 425 . . . 4  |-  ( x  e.  2o  ->  x  e.  om )
4 elnn 4655 . . . . 5  |-  ( ( y  e.  2o  /\  2o  e.  om )  -> 
y  e.  om )
51, 4mpan2 425 . . . 4  |-  ( y  e.  2o  ->  y  e.  om )
6 nndceq 6587 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  -> DECID  x  =  y )
73, 5, 6syl2an 289 . . 3  |-  ( ( x  e.  2o  /\  y  e.  2o )  -> DECID  x  =  y )
87rgen2 2592 . 2  |-  A. x  e.  2o  A. y  e.  2o DECID  x  =  y
9 netap 7368 . 2  |-  ( A. x  e.  2o  A. y  e.  2o DECID  x  =  y  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o )
108, 9ax-mp 5 1  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o
Colors of variables: wff set class
Syntax hints:    /\ wa 104  DECID wdc 836    e. wcel 2176    =/= wne 2376   A.wral 2484   {copab 4105   omcom 4639   2oc2o 6498   TAp wtap 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-tr 4144  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-1o 6504  df-2o 6505  df-pap 7362  df-tap 7364
This theorem is referenced by:  2omotaplemst  7372
  Copyright terms: Public domain W3C validator