ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneq Unicode version

Theorem rneq 4866
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
rneq  |-  ( A  =  B  ->  ran  A  =  ran  B )

Proof of Theorem rneq
StepHypRef Expression
1 cnveq 4813 . . 3  |-  ( A  =  B  ->  `' A  =  `' B
)
21dmeqd 4841 . 2  |-  ( A  =  B  ->  dom  `' A  =  dom  `' B )
3 df-rn 4649 . 2  |-  ran  A  =  dom  `' A
4 df-rn 4649 . 2  |-  ran  B  =  dom  `' B
52, 3, 43eqtr4g 2245 1  |-  ( A  =  B  ->  ran  A  =  ran  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363   `'ccnv 4637   dom cdm 4638   ran crn 4639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-cnv 4646  df-dm 4648  df-rn 4649
This theorem is referenced by:  rneqi  4867  rneqd  4868  xpima1  5087  feq1  5360  foeq1  5446  ixpsnf1o  6749  imasex  12743
  Copyright terms: Public domain W3C validator