ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneq Unicode version

Theorem rneq 4924
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
rneq  |-  ( A  =  B  ->  ran  A  =  ran  B )

Proof of Theorem rneq
StepHypRef Expression
1 cnveq 4870 . . 3  |-  ( A  =  B  ->  `' A  =  `' B
)
21dmeqd 4899 . 2  |-  ( A  =  B  ->  dom  `' A  =  dom  `' B )
3 df-rn 4704 . 2  |-  ran  A  =  dom  `' A
4 df-rn 4704 . 2  |-  ran  B  =  dom  `' B
52, 3, 43eqtr4g 2265 1  |-  ( A  =  B  ->  ran  A  =  ran  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   `'ccnv 4692   dom cdm 4693   ran crn 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  rneqi  4925  rneqd  4926  xpima1  5148  feq1  5428  foeq1  5516  ixpsnf1o  6846  imasex  13252
  Copyright terms: Public domain W3C validator