ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneq Unicode version

Theorem rneq 4831
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
rneq  |-  ( A  =  B  ->  ran  A  =  ran  B )

Proof of Theorem rneq
StepHypRef Expression
1 cnveq 4778 . . 3  |-  ( A  =  B  ->  `' A  =  `' B
)
21dmeqd 4806 . 2  |-  ( A  =  B  ->  dom  `' A  =  dom  `' B )
3 df-rn 4615 . 2  |-  ran  A  =  dom  `' A
4 df-rn 4615 . 2  |-  ran  B  =  dom  `' B
52, 3, 43eqtr4g 2224 1  |-  ( A  =  B  ->  ran  A  =  ran  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   `'ccnv 4603   dom cdm 4604   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  rneqi  4832  rneqd  4833  xpima1  5050  feq1  5320  foeq1  5406  ixpsnf1o  6702
  Copyright terms: Public domain W3C validator