ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneq GIF version

Theorem rneq 4855
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
rneq (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneq
StepHypRef Expression
1 cnveq 4802 . . 3 (𝐴 = 𝐵𝐴 = 𝐵)
21dmeqd 4830 . 2 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
3 df-rn 4638 . 2 ran 𝐴 = dom 𝐴
4 df-rn 4638 . 2 ran 𝐵 = dom 𝐵
52, 3, 43eqtr4g 2235 1 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  ccnv 4626  dom cdm 4627  ran crn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-cnv 4635  df-dm 4637  df-rn 4638
This theorem is referenced by:  rneqi  4856  rneqd  4857  xpima1  5076  feq1  5349  foeq1  5435  ixpsnf1o  6736  imasex  12726
  Copyright terms: Public domain W3C validator