ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneq GIF version

Theorem rneq 4893
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
rneq (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneq
StepHypRef Expression
1 cnveq 4840 . . 3 (𝐴 = 𝐵𝐴 = 𝐵)
21dmeqd 4868 . 2 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
3 df-rn 4674 . 2 ran 𝐴 = dom 𝐴
4 df-rn 4674 . 2 ran 𝐵 = dom 𝐵
52, 3, 43eqtr4g 2254 1 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ccnv 4662  dom cdm 4663  ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  rneqi  4894  rneqd  4895  xpima1  5116  feq1  5390  foeq1  5476  ixpsnf1o  6795  imasex  12948
  Copyright terms: Public domain W3C validator