ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneq GIF version

Theorem rneq 4947
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
rneq (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneq
StepHypRef Expression
1 cnveq 4893 . . 3 (𝐴 = 𝐵𝐴 = 𝐵)
21dmeqd 4922 . 2 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
3 df-rn 4727 . 2 ran 𝐴 = dom 𝐴
4 df-rn 4727 . 2 ran 𝐵 = dom 𝐵
52, 3, 43eqtr4g 2287 1 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  ccnv 4715  dom cdm 4716  ran crn 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-cnv 4724  df-dm 4726  df-rn 4727
This theorem is referenced by:  rneqi  4948  rneqd  4949  xpima1  5171  feq1  5452  foeq1  5540  ixpsnf1o  6873  imasex  13324  ausgrusgrien  15954
  Copyright terms: Public domain W3C validator