ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneq GIF version

Theorem rneq 4911
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
rneq (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneq
StepHypRef Expression
1 cnveq 4857 . . 3 (𝐴 = 𝐵𝐴 = 𝐵)
21dmeqd 4886 . 2 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
3 df-rn 4691 . 2 ran 𝐴 = dom 𝐴
4 df-rn 4691 . 2 ran 𝐵 = dom 𝐵
52, 3, 43eqtr4g 2264 1 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  ccnv 4679  dom cdm 4680  ran crn 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-cnv 4688  df-dm 4690  df-rn 4691
This theorem is referenced by:  rneqi  4912  rneqd  4913  xpima1  5135  feq1  5415  foeq1  5503  ixpsnf1o  6833  imasex  13187
  Copyright terms: Public domain W3C validator